Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B‐like protein‐interacting protein kinase 31 ( CIPK31 ) mutants were more susceptible to ShB, while CIPK31 overexpressors ( OX ) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31 : Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF‐hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA‐induced H 2 O 2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31‐mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H 2 O 2 while CIPK31 OX accumulated more H 2 O 2 compared to the wild‐type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H 2 O 2 .
This study aimed to explore the residual dynamics and dietary risk of dimethoate and its metabolite omethoate in celery. Celery was sprayed with 40% dimethoate emulsifiable concentrate (EC) at either a low concentration of 600 g a.i./ha or a high concentration of 900 g a.i./ha. Plants in the seedling, transplanting, or middle growth stages were sprayed once, and the samples were collected 90 days after transplantation. Plants in the harvesting stage were sprayed two or three times. The samples were collected on days 3, 5, 7, 10, 14 and 21 after the last pesticide application. The dimethoate and omethoate compounds were extracted from the celery samples using acetonitrile, and their concentrations were detected using ultra-performance liquid chromatography-tandem mass spectrometry. Also, the dietary risk assessments of dimethoate and omethoate were conducted in various populations and on different foods in China. The metabolism led to the formation of omethoate from dimethoate in the celery. The degradation dynamics of dimethoate and total residues in greenhouse celery followed the first-order kinetic equation. The half-lives of the compounds were 2.42 days and 2.92 days, respectively. The celery which received one application during the harvesting stage had a final residue of dimethoate after 14 days, which was lower than the maximum residue limit (MRL) 0.5 mg kg−1 for Chinese celery. The final deposition of the metabolite omethoate after 28 days was less than the maximum residue limit of 0.02 mg kg−1 for Chinese celery. Furthermore, the risk quotients of dimethoate in celery were less than 1; therefore, the level of chronic risk was acceptable after day 21. Only children aged 2–7 years had an HQ of dimethoate more than 1 (an unacceptable level of acute risk), while the acute dietary risks to other populations were within acceptable levels. It was recommended that any dimethoate applications to celery in greenhouses should happen before the celery reached the harvesting stage, with a safety interval of 28 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.