The interlayer stress (IS) analysis of the flexible active-matrix organic light-emitting diode (AMOLED) panel is critical for decreasing the stress concentration and reducing the risk of overall screen failure. This article relies on the linear elastic models of ABAQUS to simulate finite element analysis of foldable panels. This article discussed three sensitive locations of the flexible AMOLED panel caused by two different bending methods including U bends and water droplet bends. The finite element method for simulating the layer analysis was constructed to analyze the effect of optically clear adhesive (OCA) film thickness on the distribution of stress and strain. The module can be optimized by changing the thickness and shear modulus of OCA. With the decrease of OCA thickness and the increase of stiffness, the maximum stress of the organic light-emitting diode (OLED) layer is decreased by 20% which is 55 Mpa; meanwhile, the IS of the entire module is reduced by about 30%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.