The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.
Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study, our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F. verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species. These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi.
Phosphonamidate 3a of methoxymethylphosphonic acid (MMPA) with propofol (1) and l-alanine ethyl ester was found to be an efficient scaffold for the oral delivery of compound 1. The synthesis and evaluation of MMPA based phosphonamidates of compound 1, HSK3486 (2), and other phenolic drugs revealed the general application of MMPA as the effective delivery vehicle for phenolic drugs. On the basis of plasma concentrations of compound 1 and SN38 (14), the oral bioavailability of compound 3a and 15 in beagle dogs was found to be 97.6% and 34.1%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.