Summary Inflammasome activation and subsequent inflammatory cytokine secretion are essential for innate immune defence against multiple stimuli and are regarded as a link to adaptive immune responses. Dysfunction of inflammasome activation has been discovered at the onset or progression of infectious diseases, autoimmune diseases and cancer, all of which are also associated with metabolic factors. Furthermore, many studies concerning the metabolic regulation of inflammasome activation have emerged in recent years, especially regarding the activity of the NLRP3 inflammasome under metabolic reprogramming. In this review, we discuss the molecular mechanisms of the interactions between metabolic pathways and inflammasome activation, which exerts further important effects on various diseases.
Macrophages differentiated into a classically activated (M1) or alternatively activated phenotype (M2) in infection and tumor, but the precise effects of glycolysis and oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on macrophage polarizations were investigated using a pharmacological approach in mice. 2-Deoxy-D-glucose (2-DG) treatments, which blocks the key enzyme hexokinase of glycolysis, efficiently inhibits a specific switch to M1 lineage, decreasing the secretion of pro-inflammatory cytokines and expressions of co-stimulatory molecules associated with relieving infectious inflammation in vitro and in vivo. Glycolytic activation through the hypoxia-inducible factor-1α (HIF-1α) pathway was required for differentiation to the M1 phenotype, which conferred protection against infection. Dimethyl malonate (DMM) treatment, which blocks the key element succinate of OXPHOS, efficiently inhibits a specific switch to M2 lineage when macrophages receiving M2 stimulation, decreasing the secretion of anti-inflammatory cytokine and CD206 expressions. Mitochondrial dynamic alterations including mitochondrial mass, mitochondrial membrane potential (Dym) and ROS productions were critically for differentiation to the M2 phenotype, which conferred protection against anti-tumor immunity. Glycolysis is also required for macrophage M2 differentiation. Thus, these data provide a basis for a comprehensively understanding the role of glycolysis and OXPHOS in macrophage differentiation during anti-infection and anti-tumor inflammation.
Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions, are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects. In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and current strategies of cancer treatment by targeting MDSCs.
Dendritic cells (DCs) play an important role in anti-tumor immunity by inducing T cell differentiation. Herein, we found that the DC mechanical sensor Piezo1 stimulated by mechanical stiffness or inflammatory signals directs the reciprocal differentiation of TH1 and regulatory T (Treg) cells in cancer. Genetic deletion of Piezo1 in DCs inhibited the generation of TH1 cells while driving the development of Treg cells in promoting cancer growth in mice. Mechanistically, Piezo1-deficient DCs regulated the secretion of the polarizing cytokines TGFβ1 and IL-12, leading to increased TGFβR2-p-Smad3 activity and decreased IL-12Rβ2-p-STAT4 activity while inducing the reciprocal differentiation of Treg and TH1 cells. In addition, Piezo1 integrated the SIRT1-hypoxia-inducible factor-1 alpha (HIF1α)-dependent metabolic pathway and calcium-calcineurin-NFAT signaling pathway to orchestrate reciprocal TH1 and Treg lineage commitment through DC-derived IL-12 and TGFβ1. Our studies provide critical insight for understanding the role of the DC-based mechanical regulation of immunopathology in directing T cell lineage commitment in tumor microenvironments.
Summary Follicular T helper (TFH) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B‐cell lymphoma 6 (Bcl‐6), chemokine (C‐X‐C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD‐1) and inducible T‐cell costimulator (ICOS), the cytokine IL‐21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune‐associated diseases, including infections, autoimmune diseases and cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.