PURPOSE. Purpose The role of endothelial Yes-associated protein 1 (YAP) in the pathogenesis of retinal angiogenesis and the astrocyte network in the mouse oxygen-induced retinopathy (OIR) model is unknown. METHODS. For in vivo studies, OIR was induced in conditional endothelial YAP knockout mice and their wild-type littermates. Retinal vascularization and the astrocyte network were evaluated by whole-mount fluorescence and Western blotting. In vitro experiments were performed in astrocytes cultured with human microvascular endothelial cell-1conditioned medium to analyze the mechanisms underlying the effect of endothelial YAP on astrocytes. RESULTS. Endothelial YAP deletion not only impaired retinal blood vessels, but also caused a sparse and disrupted astrocyte network in response to OIR. Levels of the immature astrocyte marker (platelet-derived growth factor A) in the retina were substantially increased owing to YAP deficiency, suggesting a possible failure in astrocyte maturation, whereas retinal expression of leukemia inhibitory factor (LIF) was decreased. In vitro studies suggested that loss or overexpression of YAP resulted in elevated or decreased LIF secretion by human microvascular endothelial cell-1, respectively. Increased LIF levels in the culture medium promoted astrocyte maturation and proliferation and rescued YAP inhibition-induced astrocyte loss. Finally, activating YAP could protect against the pathology of the astrocyte network and even suppress pathologic retinal vascularization in control OIR mice, but not in endothelial YAP-deficient OIR mice. CONCLUSIONS. Endothelial YAP regulation of LIF secretion is required for normalized astrocyte network formation in OIR, thereby providing a novel target for protecting the astrocyte network and thus benefiting retinal blood vessels.
Purpose
Abnormal angiogenesis is a defining feature in a couple of ocular neovascular diseases. The application of anti-VEGFA therapy has achieved certain benefits in the clinic, accompanying side effects and poor responsiveness in many patients. The present study investigated the role of irisin in retinal neovascularization.
Methods
Western blot and quantitative PCR were used to determine irisin expression in the oxygen-induced retinopathy mice model. The pathological angiogenesis and inflammation index were examined after irisin administration. Primary retinal astrocytes were cultured and analyzed for VEGFA expression in vitro. Astrocyte-conditioned medium was collected for transwell assay and tube formation assay in human microvascular endothelial cells-1.
Results
Irisin was downregulated in the oxygen-induced retinopathy mice retinae. Additional irisin attenuated pathological angiogenesis, inflammation, and apoptosis in vivo. In vitro, irisin decreased astrocyte VEGFA production, and the conditioned medium suppressed human microvascular endothelial cells-1 migration. Last, irisin inhibited hypoxia-inducible factor-2α, nuclear factor-κB, and pNF-κB (Phospho-Nuclear Factor-κB) expression.
Conclusions
Irisin mitigates retinal pathological angiogenesis.
Chinese Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.