It was previously found that blending soybean oil with cinnamon bark oil (CBO), eugenol or thyme oil, Tween 80, and equal masses of water and propylene glycol could be used to prepare microemulsions. In the present study, the objective was to determine the antimicrobial activity of the microemulsions in tryptic soy broth (TSB) and 2% reduced fat milk. In TSB, the minimum inhibitory concentration (MIC) of CBO solubilized in microemulsions was up to 625 ppm against cocktails of Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7, which was equal to or higher in concentration than free CBO dissolved in ethanol. However, MICs of eugenol or thyme oil in microemulsions were much higher than that of free antimicrobials. Therefore, microemulsions of CBO were chosen to do further study. Inactivation curves of L. monocytogenes or E. coli O157:H7 in TSB or 2% reduced fat milk were tested and fitted using the Weibull model. In TSB, a gradual decrease in cell viability of L. monocytogenes and E. coli O157:H7 was observed with the microemulsion treatments at 625 ppm CBO, which was in contrast to the more rapid and greater inactivation by free CBO. Gradual inactivation of L. monocytogenes in 2% reduced fat milk was also observed in the treatment with 10,000 ppm free or microemulsified CBO. When fitted using the Weibull model, the predicted time to obtain a 3-log decrease of L. monocytogenes and E. coli O157:H7 in TSB or 2% reduced fat milk increased with an increased amount of soybean oil in microemulsions. Additionally, increasing the amount of Tween 80 in mixtures with different mass ratios of Tween 80 and essential oils significantly decreased the log reductions of L. monocytogenes in TSB. Our study showed that microemulsions can be used to dissolve EOs and control the rate of inactivating bacteria, but the composition of microemulsions is to be carefully chosen to minimize the reduction of antimicrobial activities.
Cantaloupes are susceptible to microbiological contamination in pre- or postharvest environments. Novel intervention strategies, such as antimicrobial coatings, are needed to improve the microbiological safety of cantaloupes. The objective of this study was to prepare whole cantaloupes coated with mixtures containing chitosan, lauric arginate (LAE), cinnamon oil (CO), and ethylenediaminetetraacetic acid (EDTA) and determine survival characteristics of inoculated foodborne pathogens during storage as well as cantaloupe quality attributes. Chitosan coating with 0.1% LAE, 0.1% EDTA, and 1% CO was the most effective for inactivating foodborne pathogens inoculated on cantaloupes. This coating caused a >3logCFU/cm(2) reduction of Escherichia coli O157:H7 and Listeria monocytogenes immediately after coating and reduced Salmonella enterica to below the detection limit during a 14-day storage. Total molds and yeasts also were reduced to the detection limit by the coating. The redness and yellowness of uncoated cantaloupes were significantly higher than coated ones from day 6. The firmness of uncoated cantaloupes and those coated with chitosan only was significantly lower than other treatments from day 10. No significant differences were found in total soluble solids content or weight loss between coated and uncoated cantaloupes. Results showed the potential benefits of applying the coating mixtures to improve the quality and microbiological safety of cantaloupes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.