BackgroundOncolytic viruses represent a promising therapy against cancers with acquired drug resistance. However, low efficacy limits its clinical application. The objective of this study is to investigate whether pharmacologically modulating autophagy could enhance oncolytic Newcastle disease virus (NDV) strain NDV/FMW virotherapy of drug-resistant lung cancer cells.MethodsThe effect of NDV/FMW infection on autophagy machinery in A549 lung cancer cell lines resistant to cisplatin (A549/DDP) or paclitaxel (A549/PTX) was investigated by detection of GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) puncta, formation of double-membrane vesicles and conversion of the nonlipidated form of LC3 (LC3-I) to the phosphatidylethanolamine-conjugated form (LC3-II). The effects of autophagy inhibitor chloroquine (CQ) and autophagy inducer rapamycin on NDV/FMW-mediated antitumor activity were evaluated both in culture cells and in mice bearing drug-resistant lung cancer cells.ResultsWe show that NDV/FMW triggers autophagy in A549/PTX cells via dampening the class I PI3K/Akt/mTOR/p70S6K pathway, which inhibits autophagy. On the contrary, NDV/FMW infection attenuates the autophagic process in A549/DDP cells through the activation of the negative regulatory pathway. Furthermore, combination with CQ or knockdown of ATG5 significantly enhances NDV/FMW-mediated antitumor effects on A549/DDP cells, while the oncolytic efficacy of NDV/FMW in A549/PTX cells is significantly improved by rapamycin. Interestingly, autophagy modulation does not increase virus progeny in these drug resistant cells. Importantly, CQ or rapamycin significantly potentiates NDV/FMW oncolytic activity in mice bearing A549/DDP or A549/PTX cells respectively.ConclusionsThese results demonstrate that combination treatment with autophagy modulators is an effective strategy to augment the therapeutic activity of NDV/FMW against drug-resistant lung cancers.
The aim of this study is to investigate the association between maternal gestational weight gain (GWG) and preterm birth according to pre-pregnancy body mass index (BMI) and maternal age. We did a cohort, hospital-based study in Quzhou, South China, from 1 Jan 2018 to 30 June 2019. We selected 4274 singleton live births in our analysis, 315 (7.4%) of which were preterm births. In the overall population, excess GWG was significantly associated with a decreased risk of preterm birth compared with adequate GWG (adjusted OR 0.81 [95% CI 0.72–0.91]), and the risk varied by increasing maternal age and pre-pregnancy BMI. Interestingly, underweight women who older than 35 years with excess GWG had significantly increased odds of preterm birth compared with adequate GWG in underweight women aged 20–29 years (2.26 [1.06–4.85]) and normal weight women older than 35 years (2.23 [1.13–4.39]). Additionally, low GWG was positively and significantly associated with preterm birth overall (1.92 [1.47–2.50]). Among normal weight women category, compared with adequate GWG women aged 20–29 years did, those older than 20 years with low GWG, had significantly higher odds of preterm birth, which increased with maternal age (1.80 [1.16–2.79] in 20–29 years, 2.19 [1.23–3.91] in 30–34 years, 3.30 [1.68–6.46] in ≫ 35 years). In conclusion, maternal GWG was significantly associated with the risk of preterm birth, but the risk varied by pre-pregnancy BMI and maternal age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.