Metformin (MET) is taken as a principal medication for remedying Type 2 diabetes mellitus. Its anti-tumor effect has been reported increasingly, but the precise mechanism of it remains unclear. This study aims to explore the efficacy of MET and MET combined with nitric oxide donor prodrug JS-K on the proliferation, apoptosis, and DNA damage in human renal cell carcinoma (RCC) cells, and investigate the possible molecular mechanism involved. The cell proliferation was tested through methyl-tetrazolium assay and cell apoptosis was ascertained by flow cytometry. The dihydroethidium and JC-1 fluorescent methods were used to detect Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm), respectively. Proteins associated with apoptosis and DNA damage were evaluated by Western blotting. Results showed that MET and JS-K could suppress cell growth, and the inhibition concentration 50 of treatment with MET combined with JS-K (MET + JS-K) showed more toxicity than individual agents on RCC cells. This augmented toxicity was associated with intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential alteration, and induced DNA breaks. The results of Western blotting showed that the expression level of pro-apoptotic proteins, such as Bax, Bak, caspase-3, and caspase-9, was up-regulated, and the anti-apoptotic protein Bcl-2 was down-regulated after treatment using MET alone and MET + JS-K, correspondingly. Moreover, MET + JS-K inhibited the expression of cellular PCNA and Rad51, and immunofluorescence analysis of γH2AX proved that MET + JS-K enhanced DNA damage. In summary, the results of this research indicated that MET and JS-K inhibited RCC cell growth by activating ROS, targeting mitochondria-dependent apoptotic pathways, and inducing DNA breaks.
Pterostilbene (PTE) has inhibitory effect on a wide array of tumors. However, the therapeutic potential of PTE in renal cancer cells and the underlying mechanisms have not been evaluated. In this study, the aim is to demonstrate the growth inhibitory and the underlying mechanisms of PTE on human renal cell carcinoma (RCC) cells in vitro. By cell viability, cell morphology and colony formation assays, we found that PTE significantly suppressed the proliferation of RCC cells, while had little toxicity to the normal renal cell line HK-2. Flow cytometry assay revealed that PTE potently induced the apoptosis of RCC cells in a concentration-dependent manner, which was also testified by up-regulation of the pro-apoptosis-related protein (Cyto C, Bad, Bak, Bax, Cleaved-caspase 3, Cleaved-caspase 9, Cleaved-poly(ADP-ribose)polymerase (PARP)) and down-regulation of the anti-apoptosis-related protein Bcl-2. Moreover, cell cycle being arrested in S phase and down-regulation of p-Akt and p-extracellular signal-regulated kinase (ERK)1/2 were observed following treatment with PTE in RCC cells, indicating that PTE exerted remarkable anti-tumor activity in RCC cells possibly via cell cycle arrest and inactivation of Akt and ERK1/2 signaling pathways. Immunofluorescence analysis of γH2AX and detecting the expression levels of γH2AX, proliferating cell nuclear antigen (PCNA) and Rad51 by Western blot showed that PTE induced the DNA damages response in RCC cells. Taken together, the results of the present study demonstrated that PTE was a potential preventive and therapeutic agent for human renal cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.