Orthaga olivacea Warre (Lepidoptera: Pyralidae) is an important agricultural pest of camphor trees (Cinnamomum camphora). To further supplement the known genome-level features of related species, the complete mitochondrial genome of Orthaga olivacea is amplified, sequenced, annotated, analyzed, and compared with 58 other species of Lepidopteran. The complete sequence is 15,174 bp, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a putative control region. Base composition is biased toward adenine and thymine (79.02% A+T) and A+T skew are slightly negative. Twelve of the 13 PCGs use typical ATN start codons. The exception is cytochrome oxidase 1 (cox1) that utilizes a CGA initiation codon. Nine PCGs have standard termination codon (TAA); others have incomplete stop codons, a single T or TA nucleotide. All the tRNA genes have the typical cloverleaf secondary structure, except for trnS (AGN) , in which dihydrouridine (DHU) arm fails to form a stable stem-loop structure. The A+T-rich region (293 bp) contains a typical Lepidopter motifs 'ATAGA' followed by a 17 bp poly-T stretch, and a microsatellite-like (AT) 13 repeat. Codon usage analysis revealed that Asn, Ile, Leu2, Lys, Tyr and Phe were the most frequently used amino acids, while Cys was the least utilized. Phylogenetic analysis suggested that among sequenced lepidopteran mitochondrial genomes, Orthaga olivacea Warre was most closely related to Hypsopygia regina, and confirmed that Orthaga olivacea Warre belongs to the Pyralidae family.
Colleterial glands (CG) present in the body of adult female of Bombyx mori, which can help adhere eggs on the surface of the host plants. Although this organ has been known for centuries, only morphology and its secretions have been studied. Their gene expression profiles and physiological roles remain largely unknown. Aided by high-throughput next generation sequencing (NGS), we reported the comparative transcriptome analysis of CG isolated from the H9 and the P50 strains of Bombyx mori. A total of 19,896,957 and 20,446,366 clean reads were obtained from CG of H9 and the P50 strains, respectively; then differential expression analysis was performed, and 1,509 differentially expressed genes (DEGs) were identified. Among them, 1,001 genes are up-regulated and 508 genes are down-regulated in P50 individuals compared with H9 individuals. The enrichment of GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) of DEGs confirmed that many DEGs were associated with “Amino acid transport and metabolism”, “Nucleotide transport and metabolism”, and “Inorganic ion transport and metabolism”, 25 of the DEGs related to the “ECM-receptor interaction passway”, “sphingolipid metabolism passway”, and “amino sugar and nucleotide sugar metabolism passway” were potentially involved in the process of CG development and mucus secretion. According to these data, we hypothesized that CG play an important role in providing favorable physiological environment for the glue secretion formation. In addition, GO enrichment and differential expression analysis of the DEGs in the CG indicate that this gland may be involved in the transporting of small solutes such as sugars, ions, amino acids and nucleotide sugar to the CG. Our findings lay the foundation for further research on CG function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.