Gold nanobipyramids (Au NBPs) with two sharp tips present an extremely strong electric field enhancement, which endows them with more advantages in biomedical photonics than other gold nanostructures. The application of Au NBPs for diagnosis and therapy is now under intensive investigation. Here, we report Au NBPs for surface-enhanced Raman scattering (SERS) detection and photothermal therapy (PTT) of MCF-7 cancer cells both in vitro and in vivo via bioconjugation with Raman reporter 2-naphthalenethiol (2-NAP) and folic acid (FA). The results showed that bioconjugated Au NBPs not only could be used for the quantitative detection of the MCF-7 cells in the range of 5−500 cells/mL, but also lead to the enhanced Raman signal in MCF-7 tumor-bearing nude mice with high specificity. Moreover the bioconjugated Au NBPs exhibited excellent photothermal performance in both in vitro and in vivo therapies, in which the cell viability decreased to 6.44% and the relative volume of MCF-7 tumors treated with bioconjugated Au NBPs reduced to 0.037 under the irradiation of an 808 nm laser. Our results indicate that bioconjugated Au NBPs offer an excellent nanoplatform for PTT and SERS detection in the future.
Taking advantage of photothermal conversion, the surface pores of water-dispersible single-walled carbon nanotubes assembled on polymer particles were rapidly closed by NIR irradiation to produce macroporous polymeric microspheres with multiple interconnected chambers. These particles can act as smart containers to encapsulate and hold DNA molecules.
A family of anisotropic particles is synthesized via a facile, scalable, and versatile method based on a conventional double emulsion, which is very well suited for practical production and applications. Partial wetting theory is well established as a powerful instrument to elucidate the controlled phase separation within the double emulsion. This theory is employed to assist the manipulation of the phase separation process for the formation of well-defined nonspherical particles as well as their triggered release.
A versatile and readily scalable approach to fabricate a cheap and sensitive paper gas sensor is described. Chemically acidified single-walled carbon nanotubes are assembled in paper, forming continuous sensing arrays with a low detection limit and high detection selectivity for ammonia gas.
A straightforward photo-annealing approach was developed for building functional polymer layers on paper. Conducting polyaniline with the ability for photothermal conversion can be readily annealed by near-infrared light. The annealed polymers become both insulating and hydrophobic. Selective photo-annealing produces a functional layer with patterned conductive arrays. This material exhibits real-time response to ammonium gas. Complete photo-annealing preserves the porous structure but changes the wettability of the polyaniline-nanofiber film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.