Spider
silk has exceptional mechanical and biocompatibility properties.
The goal of this study was optimization of the mechanical properties
of synthetic spider silk thin films made from synthetic forms of MaSp1
and MaSp2, which compose the dragline silk of Nephila
clavipes. We increased the mechanical stress of MaSp1
and 2 films solubilized in both HFIP and water by adding glutaraldehyde
and then stretching them in an alcohol based stretch bath. This resulted
in stresses as high as 206 MPa and elongations up to 35%, which is
4× higher than the as-poured controls. Films were analyzed using
NMR, XRD, and Raman, which showed that the secondary structure after
solubilization and film formation in as-poured films is mainly a helical
conformation. After the post-pour stretch in a methanol/water bath,
the MaSp proteins in both the HFIP and water-based films formed aligned
β-sheets similar to those in spider silk fibers.
Nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) experiments reveal the structural importance of divalent cation–phosphate complexes in the formation of β-sheet nanocrystals from phosphorylated serine-rich regions within aquatic silk from caddisfly larvae of the species Hesperophyla consimilis. Wide angle XRD data on native caddisfly silk show that the silk contains a significant crystalline component with a repetitive orthorhombic unit cell aligned along the fiber axis with dimensions of 5.9 Å × 23.2 Å × 17.3 Å. These nanocrystalline domains depend on multivalent cations, which can be removed through chelation with ethylenediaminetetraacetic acid (EDTA). A comparison of wide angle X-ray diffraction data before and after EDTA treatment reveals that the integrated peak area of reflections corresponding to the nanocrystalline regions decreases by 15–25% while that of the amorphous background reflections increases by 20%, indicating a partial loss of crystallinity. 31P solid-state NMR data on native caddisfly silk also show that the phosphorylated serine-rich motifs transform from a rigid environment to one that is highly mobile and water-solvated after treatment with EDTA. The removal of divalent cations through exchange and chelation has therefore caused a collapse of the β-sheet structure. However, NMR results show that the rigid phosphorus environment is mostly recovered after the silk is re-treated with calcium. The 31P spin–lattice (T1) relaxation times were measured at 7.6 ± 3.1 and 1 ± 0.5 s for this calcium-recovered sample and the native silk sample, respectively. The shorter 31P T1 relaxation times measured for the native silk sample are attributed to the presence of paramagnetic iron that is stripped away during EDTA chelation treatment and replaced with diamagnetic calcium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.