The rising demand for radiation detection materials in many applications has led to extensive research on scintillators. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.
Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr 3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr 3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free largearea film (8.5 × 8.5 cm 2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.
Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional (3D) objects because fabrication of large-area, flexible silicon-based photodetectors on highly curved surfaces remains a challenge 1-3 . Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution 3D imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated with quantum mechanical simulation, our experimental characterizations show that a thermally activated slow-hopping of trapped electrons, due to radiation-induced anionic migration in host lattices, induces more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging (Xr-LEI) with >20-lp/mm resolution and >15-day optical memory. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and also offer a new paradigm to motivate future research in wearable X-ray detectors for patient-centered radiography and mammogram, imaging-guided therapeutics, high-energy physics, and deep learning in radiology.
Materials that exhibit X-ray excited luminescence have great potential in radiation detection, security inspection, biomedical applications, and X-ray astronomy [1][2][3][4] . However, such materials are almost exclusively limited to inorganic crystals, which are typically prepared under high temperatures 5 . Herein, we report a design principle of purely organic phosphors to boost X-ray excited luminescence with sufficient utilization of triplet excitons. Our experimental data reveal that proportion of emission from bright triplet excitons is significantly improved upon X-ray irradiation, compared with UV excitation. These organic phosphors have a detection limit of 33 nGy/s, which is 167 times lower than the standard dosage for X-ray medical examinations. We further demonstrated their potential application in X-ray radiography, which can be conveniently recorded using a digital camera. These findings illustrate a fundamental principle to design efficient X-ray excited purely organic phosphors, propelling the development of radioluminescence related applications.X-ray-responsive materials generally display large X-ray attenuation coefficients because of high atomic number elements, which have aroused intense research interest owing to their wide applications in bioimaging, radiotherapy, and non-destructive defect detection of industrial products [6][7][8][9][10] . Such X-ray-responsive materials include non-emissive radiocontrast agents (e.g., iohexol and iopromide) and scintillators that can convert high energy X-ray beam into low-energy visible photons 2,11,12 . To date, almost all reported X-ray-sensitive materials are limited to inorganic phosphors or organometallic materials containing heavy metals 13 . Purely organic materials, also termed as metal-free organic phosphors, have congenital advantages as scintillator candidates, including abundant resources, flexibility, mild preparation conditions, and environmental friendliness. However, weak X-ray absorption and low exciton utilization hinder the development of purely organic scintillators 12 , leaving it a formidable challenge. Purely organic phosphors are mainly made up of light atoms, such as C, H, N, etc., resulting in weak absorbance of X-ray (attenuation coefficient μ ∝Z , Equation S1). Besides, there only exists fluorescence from singlet excitons upon irradiation owing to weak spin-orbit coupling (SOC). In principle, almost all triplet excitons,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.