Transition metal complexes of Ru(II), Pt(II) and Ir(III) with strong absorption of visible light and long-lived T 1 excited states were summarized. A design rationale of these complexes, i.e. direct metalation of organic chromophore, was proposed. Alternatively an organic chromophore can be dangled on the peripheral moiety of the coordination center. In both cases the long-lived intraligand triplet excited state ( 3 IL) can be accessed. However, the 3 IL excited state is usually emissive for the former case and it is very often non-emissive for the latter case. Two methods used for study of the long-lived triplet excited state, i.e. the time-resolved transient difference absorption spectroscopy and the spin density analysis, are briefly introduced. Preliminary applications of the complexes in luminescent O 2 sensing and triplet-triplet annihilation (TTA) upconversions were discussed.
Thienyl-substituted BODIPY derivatives were prepared as organic triplet photosensitizers for triplettriplet annihilation (TTA) upconversion. The photophysical properties of the sensitizers were fully studied with steady state and time-resolved spectroscopy, as well as density functional theory (DFT) calculations. Sensitizers with both 2-monothienyl substituted (BI-1) and 2,6-dithienyl substituted BODIPY cores (BI-2) were prepared. These sensitizers show strong absorption in the visible range. Interestingly, the sensitizers show large Stokes shifts (up to 86 nm) vs. small Stokes shifts (ca. 15 nm) for the normal BODIPY derivatives. DFT/TDDFT calculations show that the large Stokes shifts are due to the remarkable geometry relaxation of the sensitizers upon photoexcitation. The sensitizers show long-lived triplet excited states (up to 95.2 ms at room temperature), which is the longest T 1 state lifetime of organic sensitizers used for TTA upconversion. DFT calculations indicate that the energy level T 1 state does not decrease, although the absorption-emission wavelengths of the thiophenesubstituted sensitizers are red-shifted compared to the unsubstituted BODIPY, which is beneficial for TTA upconversion. The organic sensitizers were used for TTA upconversion and upconversion quantum yields up to 16.5% were observed, compared to the quantum yields of 0.6% and 6.1% observed previously with organic triplet sensitizers. The efficient TTA upconversion is attributed to the enhanced triplet-triplet-energy-transfer (TTET) process, confirmed by the lifetime quenching experiments of the photosensitizers. Our results are useful for the design of new efficient organic triplet photosensitizers to replace the currently used phosphorescent transition metal complex sensitizers for TTA upconversion and other appropriate photophysical processes, such as photocatalysis, photodynamic therapy, etc.{ Electronic Supplementary Information (ESI) available: More structural characterization data and Z-matrix of the compounds for DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.