Skeletal muscle development and growth are closely associated with efficiency of poultry meat production and its quality. We performed whole transcriptome profiling based on RNA sequencing of breast muscle tissue obtained from Shouguang chickens at embryonic days (E) 12 and 17 to post-hatching days (D) 1, 14, 56, and 98. A total of 9,447 differentially expressed genes (DEGs) were filtered (Q < 0.01, fold change > 2). Time series expression profile clustering analysis identified five significantly different expression profiles that were divided into three clusters. DEGs from cluster I with downregulated pattern were significantly enriched in cell proliferation processes such as cell cycle, mitotic nuclear division, and DNA replication. DEGs from cluster II with upregulated pattern were significantly enriched in metabolic processes such as glycolysis/gluconeogenesis, insulin signaling pathway, calcium signaling pathway, and biosynthesis of amino acids. DEGs from cluster III, with a pattern that increased from E17 to D1 and then decreased from D1 to D14, mainly contributed to lipid metabolism. Therefore, this study may help us explain the mechanisms underlying the phenotype that myofiber hyperplasia occurs predominantly during embryogenesis and hypertrophy occurs mainly after birth at the transcriptional level. Moreover, lipid metabolism may contribute to the early muscle development and growth. These findings add to our knowledge of muscle development in chickens.
Chicken body weight (BW) is an economically important trait, and many studies have been conducted on genetic selection for BW. However, previous studies have detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) on purebred Wengshang Barred chicken. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, and 175,211 SNPs were selected as candidate SNPs for genome-wide association analysis using TASSEL general linear models. Six SNP markers reached genome-wide significance. Of these, rs732048524, rs735522839, rs738991545, and rs15837818 were significantly associated with body weight at 28 days (BW28), while rs314086457 and rs315694878 were significantly associated with BW120. These SNPs are close to seven genes (PRSS23, ME3, FAM181B, NABP1, SDPR, TSSK6L2, and RBBP8). Moreover, 24 BW-associated SNPs reached "suggestive" genome-wide significance. Of these, 6, 13, 1, and 4 SNPs were associated with BW28, BW56, BW80, and BW120, respectively. These results would enrich the studies on BW and promote the use of Chinese chicken, especially the Wenshang Barred chicken.
Avian leukosis virus (ALV) is a tumor-inducing virus that spreads among most chicken species, causing serious financial losses for the poultry industry. Subgroup J avian leukosis virus (ALV-J) is a recombinant exogenous ALV, which shows more extensive host range in comparison with other subgroups, especially in Chinese local chickens. To identify the relationship between ALV-J host range and the polymorphism of its cellular receptors, we performed a wide range epidemiological investigation of current ALV-J infection in Chinese local chickens, and discovered that all the 18 local chicken breeds being investigated from main local chicken breeding provinces were ALV-J positive. Furthermore, we cloned ALV-J cellular receptor genes of chNHE1 and chANXA2 of these 18 chicken breeds. Sequence alignment demonstrated that despite several regular mutations at the nucleotide level, there were no corresponding amino acid mutations for either chNHE1 gene or chANXA2 gene. Additionally, virus entry assay indicated that the level of viral enter into cells is stable among different chicken breeds. Results of this study indicated that the wide host range of ALV-J in Chinese local chickens was partially due to the high conservatism of its cellular receptors, and also provide target sites for drug design of resistance to ALV-J infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.