In this work, recombinant Pichia pastoris GS115-lccA was cultured and expressed with the highest laccase activity of 2357 U/L with ABTS (2, 2'-nazinobis-(3-ethylbenzthiazoline-6-sulphonate)) as reacting substrate. To achieve the higher laccase activity, multiple key factors were screened (using a Plackett-Burman design of experiments methodology) related to the fermentation conditions for producing GS115-lccA. Subsequently, a Box-Behnken response surface methodology was employed for further optimization. The optimum fermentation conditions of the fermentation were obtained as follows: 0.603% methanol added into the culture every 24 h, medium optimal initial pH 7.1, and liquid medium volume of 20.4% provided the highest enzyme activity of 5235 U/L. The decolorization experiments of dyes (Reactive Blue KN-R and Acid Red 35) were carried with the laccase cultured by recombinant P. pastoris GS115-lccA. This purified enzyme showed excellent decolorization capacity. After 24 h, the decolorization of Reactive Blue KN-R with 100 mg/L at 50 °C, pH 4.5 using 20 mM acetate buffer with 2 U/mL purified enzyme was 91.33%, and for Acid Red 35, the decolorization was 78.96%. All results suggested that this laccase may be suitable for the wastewater treatment of similar azo and anthraquinone dyes from the deinking and dyeing industries.
The development of new energy industry is in full swing, among which the most representative wind power industry attracts much attention. The development of wind power industry in China has entered a stable stage from its initial stage. Inconsistency, imbalance and inadequacy in the process of industrial development have gradually emerged as a ceiling hindering the in-depth development of wind power industry. To break the bottleneck of wind power industry, optimize the development path of wind power industry and realize green, healthy and sustainable development, the key lies in innovation drive, and the hinge lies in fiscal and taxation support.
Background
The most common inheritance pattern responsible for congenital deafness belongs to autosomal recessive non‐syndromic hearing loss (ARNSHL) and mutations of the highly heterogeneous MYO15A locus are present in a large proportion of cases.
Methods
One Chinese family with ARNSHL was subjected to clinical evaluation and genetic analysis. We used targeted and whole exome sequencing with Sanger sequencing to identify and characterize mutations. Bioinformatics analysis was conducted to evaluate molecular functions.
Results
Three compound heterozygous MYO15A gene variants, including two novel variants, c.6804G > A (p.M2268I), and c.6188_6190delinsGTCA (p.F2063Cfs*60), responsible for deafness were identified. Pathogenicity was assessed by multiple bioinformatics analyses.
Conclusion
We identified novel mutations of the MYO15A locus associated with ARNSHL in a Chinese family. The current findings expand the MYO15A pathogenic mutation spectrum to assist with genetic counseling and prenatal diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.