GERMANYStrong electronic correlations can produce remarkable phenomena such as metal-insulator transitions 1 and greatly enhance superconductivity 2 , thermoelectricity 3 , or optical non-linearity 4 . In correlated systems, spatially varying charge textures also amplify magnetoelectric effects 5 or electroresistance in mesostructures 6 . However, how spatially varying spin textures may influence electron transport in the presence of correlations remains unclear. Here we demonstrate a very large topological Hall effect (THE) 7,8 in thin films of a lightly electron-doped charge-transfer insulator, (Ca, Ce)MnO3. Magnetic force microscopy reveals the presence of magnetic bubbles, whose density vs. magnetic field peaks near the THE maximum, as is expected to occur in skyrmion systems 9 . The THE critically depends on carrier concentration and diverges at low doping, near the metal-insulator transition. We discuss the strong amplification of the THE by correlation effects and give perspectives for its non-volatile control by electric fields.* manuel.bibes@cnrs-thales.fr these authors contributed equally to the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.