Identification of influential nodes in complex networks is an area of exciting growth since it can help us to deal with various problems. Furthermore, identifying important nodes can be used across various disciplines, such as disease, sociology, biology, engineering, just to name a few. Hence, how to identify influential nodes more accurately deserves further research. Traditional identification methods usually only focus on the local or global information of the network. However, only focusing on a part of the information in the network will lead to the loss of information, resulting in inaccurate results. In order to address this problem, an identification method based on network efficiency of edge weight updating is proposed, which can effectively incorporate both global and local information of the network. Our proposed method avoids the lack of information in the network and ensures the accuracy of the results as much as possible. Moreover, by introducing the iterative idea of weight updating, some dynamic information is also introduced into our proposed method, which is more convincing. Varieties of experiments have been carried out on 11 real-world data sets to demonstrate the effectiveness and superiority of our proposed method.
Vital nodes identification is an essential problem in network science. Various methods have been proposedto solve this problem. In particular, based on the gravity model, a series of improved gravity models are proposed to find vital nodes better in complex networks. However, they still have the room to be improved.In this paper, a novel and improved gravity model, which is named network efficiency gravity centrality model (NEG), integrates gravity model and network efficiency is proposed. Compared to other methods based on different gravity models, the proposed method considers the effect of the nodes on structure robustness of the network better. To solidate the superiority of the proposed method, experiments on varieties of real-world networks are carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.