Cancer has become a serious concern in public health. Harmful side effects and multidrug resistance of traditional chemotherapy have prompted urgent needs for novel anticancer drugs or therapeutic approaches. Anticancer peptides (ACPs) have become promising molecules for novel anticancer agents because of their unique mechanism and several extraordinary properties. Most α-helical ACPs target the cell membrane, and interactions between ACPs and cell membrane components are believed to be the key factor in the selective killing of cancer cells. In this review, we focus on the exploitation of the structure and function of α-helical ACPs, including the distinction between cancer and normal cells, the proposed anticancer mechanisms, and the influence of physicochemical parameters of α-helical ACPs on the biological activities and selectivity against cancer cells. In addition, the design and modification methods to optimize the cell selectivity of α-helical ACPs are considered. Furthermore, the suitability of ACPs as cancer therapeutics is discussed.
The nutrient uptake and allocation of cucumber (Cucumis sativus L.) seedlings at different root-zone temperatures (RZT) and different concentrations of nitrogen (N), phosphorus (P), and potassium (K) nutrients were examined. Plants were grown in a nutrient solution for 30 d at two root-zone temperatures (a diurnally Fuctuating ambient 10 C-RZT and a constant 20 C-RZT) with the aerial parts of the plants maintained at ambient temperature (10 C-30 C). Based on a Hoagland nutrient solution, seven N, P, and K nutrient concentrations were supplied to the plants at each RZT. Results showed that total plant and shoot dry weights under each nutrient treatment were significantly lower at low root-zone temperature (10 C-RZT) than at elevated root-zone temperature (20 C-RZT). But higher root dry weights were obtained at 10 C-RZT than those at 20 C-RZT. Total plant dry weights at both 10 C-RZT and 20 C-RZT were increased with increased solution N concentration, but showed different responses under P and K treatments. All estimated nutrient concentrations (N, P, and K) and uptake by the plant were obviously influenced by RZT. Low root temperature (10 C-RZT) caused a remarkable reduction in total N, P, and K uptake of shoots in all nutrient treatments, and more nutrients were accumulated in roots at 10 C-RZT than those at 20 C-RZT. N, P, and K uptakes and distribution ratios in shoots were both improved at elevated root-zone temperature (20 C-RZT). N supplies were favorable to P and K uptake at both 10 C-RZT and 20 C-RZT, with no significantly positive correlation between N and P, or N and K uptake. In conclusion, higher RZT was more beneficial to increase of plant biomass and mineral nutrient absorption than was increase of nutrient concentration. Among the three element nutrients, increasing N nutrient concentration in solution promoted better tolerance to low RZT in cucumber seedlings than increasing P and K. In addition, appropriately decreased P concentration favors plant growth.
The glucose transporter GLUT1, a plasma membrane protein that mediates glucose homeostasis in mammalian cells, is responsible for constitutive uptake of glucose into many tissues and organs. Many studies have focused on its vital physiological functions and close relationship with diseases. However, the molecular mechanisms of its activation and transport are not clear, and its detailed distribution pattern on cell membranes also remains unknown. To address these, we first investigated the distribution and assembly of GLUT1 at a nanometer resolution by super-resolution imaging. On HeLa cell membranes, the transporter formed clusters with an average diameter of ∼250 nm, the majority of which were regulated by lipid rafts, as well as being restricted in size by both the cytoskeleton and glycosylation. More importantly, we found that the activation of GLUT1 by azide or MβCD did not increase its membrane expression but induced the decrease of the large clusters. The results suggested that sporadic distribution of GLUT1 may facilitate the transport of glucose, implying a potential association between the distribution and activation. Collectively, our work characterized the clustering distribution of GLUT1 and linked its spatial structural organization to the functions, which would provide insights into the activation mechanism of the transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.