Mahuang–Xingren (MX, Ephedra sinica Stapf-Prunus armeniaca L.) is a classic herb pair used in traditional Chinese medicine. This combined preparation reduces the toxicity of Xingren through the stereoselective metabolism of its main active ingredient amygdalin. However, whether stereoselectivity is important in the pharmacokinetic properties of amygdalin either in the traditional decoction or in the dispensing granules is unclear. Amygdalin is hydrolyzed to its metabolite, prunasin, which produces hydrogen cyanide by degradation of the cyano group. A comprehensive study of the metabolic pathway of amygdalin is essential to better understand the detoxification process. In this article, the potential detoxification pathway of MX is further discussed with regard to herb interactions. In this study, the pharmacokinetic parameters and metabolism of amygdalin and prunasin were investigated by comparing the traditional decoction and the dispensing granule preparations. In addition, several potential metabolites were characterized in an incubation system with rat liver microsomes or gut microbial enzymes. The combination of Xingren with Mahuang reduces exposure to D-amygdalin in vivo and contributes to its detoxification, a process that can be further facilitated in the traditional decoction. From the in vitro co-incubation model, 15 metabolites were identified and classified into cyanogenesis and non-cyanogenesis metabolic pathways, and of these, 10 metabolites were described for the first time. The level of detoxified metabolites in the MX traditional decoction was higher than that in the dispensing granules. The metabolism of amygdalin by the gut microbial enzymes occurred more rapidly than that by the rat liver microsomes. These results indicated that combined boiling both herbs during the preparation of the traditional decoction may induce several chemical changes that will influence drug metabolism in vivo. The gut microbiota may play a critical role in amygdalin metabolism. In conclusion, detoxification of MX may result 1) during the preparation of the decoction, in the boiling phase, and 2) from the metabolic pathways activated in vivo. Stereoselective pharmacokinetics and deamination metabolism have been proposed as the detoxification pathway underlying the compatibility of MX. Metabolic detoxification of amygdalin was quite different between the two combinations, which indicates that the MX decoctions should not be completely replaced by their dispensing granules.
Background
The pseudo germ-free (PGF) model has been widely used to research the role of intestinal microbiota in drug metabolism and efficacy, while the modelling methods and the utilization of the PGF model are still not standardized and unified. A comprehensive and systematic research of the PGF model on the composition and function of the intestinal microbiota, changes in host cytochrome P450 (CYP450) enzymes expression and intestinal mucosal permeability in four different modelling cycles of the PGF groups are provided in this paper.
Results
16S rRNA gene amplicon sequencing was employed to compare and analyze the alpha and beta diversity, taxonomic composition, taxonomic indicators and predicted function of gut microbiota in the control and PGF groups. Bacterial richness and diversity decreased significantly in the PGF group beginning after the first week of establishment of the PGF model with antibiotic exposure. The PGF group exposed to antibiotics for 4-week-modelling possessed the fewest indicator genera. Moreover, increased intestinal mucosal permeability occurred in the second week of PGF model establishment, indicating that one week of antibiotic exposure is an appropriate time to establish the PGF model. The results of immunoblots revealed that CYP1A2, CYP2C19 and CYP2E1 expression was significantly upregulated in the PGF group compared with the control group, implying that the metabolic clearance of related drugs would change accordingly. The abundance of functional pathways predicted in the gut microbiota changed dramatically between the control and PGF groups.
Conclusions
This study provides information concerning the microbial and CYP450 enzyme expression profiles as a reference for evaluating drug metabolism differences co-affected by gut microbiota and host CYP450 enzymes in the PGF model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.