There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.
Cocrystallization has been applied widely for material synthesis. Recently cocrystal of organic molecules has been developing rapidly, taking the advantages of the flexibility and self-assembly of organic molecules. Here we report an experimental study of a cocrystal of copper-phthalocyanines and fluorinated ones. We have grown the samples via the vapor-phase deposition of the mixture with different mass ratios from 1:13.5 to 6:1. As suggested by our scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy, new crystal structures and morphologies through our novel strategy for the cocrystallization of these molecules have been found. Our work will provide a solid foundation to systematically synthesize the cocrystal of phthalocyanine molecules with new crystal structures, thus providing the opportunity to advance material properties.
Recently, spin-bearing molecules have been experimentally demonstrated to have great potential as building blocks for quantum information processing due to their substantial advantages including tunability, portability, and scalability. Here, we propose a theoretical model based on the theory of open quantum systems for spin dynamics in a molecule containing one radical, which can interact with the triplet state arising from another part of the molecule owing to optical excitation and intersystem crossing. With the initial state being a classical mixture of a radical $$\frac{1}{2}$$
1
2
-spin, the exchange interaction between the radical and the triplet produces a spin coherent state, which could potentially be used for a qubit-qutrit quantum entangling gate. Our calculations for the time-resolved electron paramagnetic resonance spectra showed good qualitative agreement with the related experimental results for radical-bearing molecules at high temperature (~77 K, the boiling point of liquid nitrogen). This work therefore lays a solid theoretical cornerstone for optically driven quantum gate operations in radical-bearing molecular materials, aiming toward high-temperature quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.