A rich line of works focus on designing elegant loss functions under the deep metric learning (DML) paradigm to learn a discriminative embedding space for remote sensing image retrieval (RSIR). Essentially, such embedding space could efficiently distinguish deep feature descriptors. So far, most existing losses used in RSIR are based on triplets, which have disadvantages of local optimization, slow convergence and insufficient use of similarity structure in a mini-batch. In this paper, we present a novel DML method named as global optimal structured loss to deal with the limitation of triplet loss. To be specific, we use a softmax function rather than a hinge function in our novel loss to realize global optimization. In addition, we present a novel optimal structured loss, which globally learn an efficient deep embedding space with mined informative sample pairs to force the positive pairs within a limitation and push the negative ones far away from a given boundary. We have conducted extensive experiments on four public remote sensing datasets and the results show that the proposed global optimal structured loss with pairs mining scheme achieves the state-of-the-art performance compared with the baselines.
Several recent works have shown that aggregating local descriptors to generate global image representation results in great efficiency for retrieval and classification tasks. The most popular method following this approach is VLAD (Vector of Locally Aggregated Descriptors). We present a novel image presentation called Distribution Entropy Boosted VLAD (EVLAD), which extends the original vector of locally aggregated descriptors. The original VLAD adopts only residuals to depict the distribution information of every visual word and neglects other statistical clues, so its discriminative power is limited. To address this issue, this paper proposes the use of the distribution entropy of each cluster as supplementary information to enhance the search accuracy. To fuse two feature sources organically, two fusion methods after a new normalization stage meeting power law are also investigated, which generate identically sized and double-sized vectors as the original VLAD. We validate our approach in image retrieval and image classification experiments. Experimental results demonstrate the effectiveness of our algorithm.
Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.
With the improvement of various space-satellite shooting methods, the sources, scenes, and quantities of remote sensing data are also increasing. An effective and fast remote sensing image retrieval method is necessary, and many researchers have conducted a lot of work in this direction. Nevertheless, a fast retrieval method called hashing retrieval is proposed to improve retrieval speed, while maintaining retrieval accuracy and greatly reducing memory space consumption. At the same time, proxy-based metric learning losses can reduce convergence time. Naturally, we present a proxy-based hash retrieval method, called DHPL (Deep Hashing using Proxy Loss), which combines hash code learning with proxy-based metric learning in a convolutional neural network. Specifically, we designed a novel proxy metric learning network, and we used one hash loss function to reduce the quantified losses. For the University of California Merced (UCMD) dataset, DHPL resulted in a mean average precision (mAP) of up to 98.53% on 16 hash bits, 98.83% on 32 hash bits, 99.01% on 48 hash bits, and 99.21% on 64 hash bits. For the aerial image dataset (AID), DHPL achieved an mAP of up to 93.53% on 16 hash bits, 97.36% on 32 hash bits, 98.28% on 48 hash bits, and 98.54% on 64 bits. Our experimental results on UCMD and AID datasets illustrate that DHPL could generate great results compared with other state-of-the-art hash approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.