The enrichment of Fusobacterium nucleatum (Fn) has been identified in CRC patients and associated with worse outcomes. However, whether Fn was involved in the metastasis of CRC was not well determined. Here, we found that the abundance of Fn was significantly increased in CRC patients with lymph nodes metastasis. To further clarify the role of Fn in CRC metastasis, we performed transwell and wound healing assays after incubating CRC cell lines with or without Fn and injected Fn-treated or untreated CRC cells into nude mice via tail vein. The results indicated that Fn infection promoted CRC cells migration in vitro, as well as lung metastasis in vivo. Interestingly, colonization of Fn was detected in metastatic lung lesions of nude mice by fluorescence in situ hybridization. Mechanistically, RNA sequencing and validation study revealed that Fn significantly upregulated the expression of long non-coding RNA Keratin7-antisense (KRT7-AS) and Keratin7 (KRT7) in CRC cells. Importantly, Fn-induced CRC lung metastasis was attenuated by the depletion of KRT7-AS. In addition, KRT7-AS facilitated CRC cells migration by upregulating KRT7. Subsequently, we found that NF-κB signaling pathway was involved in the upregulation of KRT7-AS upon Fn infection. In conclusion, Fn infection upregulated KRT7-AS/KRT7 by activating NF-κB pathway, which promoted CRC cell migration in vitro and metastasis in vivo.
Immunotherapy has received widespread attention in the treatment of HCC, among which the immune checkpoint inhibitors, such as PD-1 antibodies, have shown promising antitumor effects in phase I/ II clinical trials for advanced therapy in HCC. [3,4] However, the responsiveness to immune checkpoint inhibitors among patients is limited (≈20-30%). Neither nivolumab nor pembrolizumab reached the primary end points of overall survival, which did not achieve the statistical significance, in the randomized phase III trials for advanced HCC patients. [5] Therefore, how to enhance the responsiveness to immunotherapy in HCC patients is a key issue to be addressed urgently.Activation of cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase/interferon gene stimulator (cGAS/STING) signals to upregulate innate immunity has become an emerging strategy for enhancing tumor immunotherapy. cGAS in tumor cells can sense intracellular damaged DNA and activate STING to upregulate type I interferon (IFN) and proinflammatory cytokines, thus inhibiting tumor progression. [6] Crosstalk between tumors and neighboring immune cells can also be achieved by the cGAS/ STING pathway. Tumor DNA can activate cGAS/STING signals Although immunotherapy such as immune checkpoint inhibitors has shown promising efficacy in cancer treatment, the responsiveness among patients is relatively limited. Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway to upregulate innate immunity has become an emerging strategy for enhancing tumor immunotherapy. Herein, ZnS@BSA (bovine serum albumin) nanoclusters synthesized via a self-assembly approach are reported, where the released zinc ions under acidic tumor microenvironment significantly enhance cGAS/STING signals. Meanwhile, intracellular zinc ions can produce reactive oxygen species, which is further facilitated by the generated H 2 S gas from ZnS@BSA via specifically inhibiting catalase in hepatocellular carcinoma cells. It is found that the nanoclusters activate the cGAS/ STING signals in mice, which promotes the infiltration of CD8 + T cells at the tumor site and cross-presentation of dendritic cells, leading to an improved immunotherapy efficacy against hepatocellular carcinoma.
Long noncoding RNAs (lncRNAs) are emerging as a new class of important regulators of signal transduction in tissue homeostasis and cancer development. Liquid-liquid phase separation (LLPS) occurs in a wide range of biological processes, while its role in signal transduction remains largely undeciphered. In this study, we uncovered a lipid-associated lncRNA, small nucleolar RNA host gene 9 (SNHG9) as a tumor-promoting lncRNA driving liquid droplet formation of Large Tumor Suppressor Kinase 1 (LATS1) and inhibiting the Hippo pathway. Mechanistically, SNHG9 and its associated phosphatidic acids (PA) interact with the C-terminal domain of LATS1, promoting LATS1 phase separation and inhibiting LATS1-mediated YAP phosphorylation. Loss of SNHG9 suppresses xenograft breast tumor growth. Clinically, expression of SNHG9 positively correlates with YAP activity and breast cancer progression. Taken together, our results uncover a novel regulatory role of a tumor-promoting lncRNA (i.e., SNHG9) in signal transduction and cancer development by facilitating the LLPS of a signaling kinase (i.e., LATS1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.