ObjectiveTo determine whether saccadic velocity in the suppression head impulse paradigm (SHIMP) test is a reliable indicator of vestibular loss at the acute and at the chronic stage in patients suffering from different vestibular pathologies.MethodsThirty-five normal subjects and 57 patients suffering from different vestibular pathologies associated with unilateral vestibular loss (UVL) or bilateral vestibular loss (BVL) were tested in the SHIMPs paradigm. SHIMPs were performed by turning the head 10 times at high velocities to the left or right side, respectively. The patients were instructed to fixate on a red spot generated by a head-fixed laser projected on the wall. In this SHIMPs paradigm, healthy subjects made a large anti-compensatory saccade at the end of the head turn (a SHIMP saccade). The peak saccadic velocity, the percentage of the trials completed with saccades in 10 trials, and the latency of the saccades were quantified in each group. A video-head impulse test (v-HIT) was systematically performed in all of our subjects as well as a caloric test. The dizziness handicap inventory questionnaire was also given to chronic UVL and BVL patients.ResultsAt the acute stage after a complete UVL, patients had zero or a few anti-compensatory saccades for low velocity head turns toward the lesioned side. These saccades had lower velocity than the anti-compensatory saccades recorded during head rotation toward the intact side and/or compared with the saccades measured in control subjects. At the chronic stage, some of the patients recovered the ability to perform SHIMP saccades at each head turn toward the lesioned side, but very often these saccades were of significantly lower velocity. In BVL patients, no anti-compensatory saccades, or only significantly smaller ones, could be detected for head turns to both sides.ConclusionSHIMP is a specific and sensitive test to detect a complete horizontal canal loss at the acute stage. In addition, it reflects the ability of patients with moderate horizontal vestibulo–ocular reflex gain decrease to generate anti-compensatory saccades in the chronic stage. In association with v-HIT, it allows determination of the residual vestibular function and to detect anti-compensatory saccades.
ObjectiveWe examined the eye movement response patterns of a group of patients with bilateral vestibular loss (BVL) during suppression head impulse testing. Some showed a new saccadic strategy that may have potential for explaining how patients use saccades to recover from vestibular loss.MethodsEight patients with severe BVL [vestibulo-ocular reflex (VOR) gains less than 0.35 and absent otolithic function] were tested. All patients were given the Dizziness Handicap Inventory and questioned about oscillopsia during abrupt head movements. Two paradigms of video head impulse testing of the horizontal VOR were used: (1) the classical head impulse paradigm [called head impulse test (HIMPs)]—fixating an earth-fixed target during the head impulse and (2) the new complementary test paradigm—fixating a head-fixed target during the head impulse (called SHIMPs). The VOR gain of HIMPs was quantified by two algorithms.ResultsDuring SHIMPs testing, some BVL patients consistently generated an inappropriate covert compensatory saccade during the head impulse that required a corresponding large anti-compensatory saccade at the end of the head impulse in order to obey the instructions to maintain gaze on the head-fixed target. By contrast, other BVL patients did not generate this inappropriate covert saccade and did not exhibit a corresponding anti-compensatory saccade. The latencies of the covert saccade in SHIMPs and HIMPs were similar.ConclusionThe pattern of covert saccades during SHIMPs appears to be related to the reduction of oscillopsia during abrupt head movements. BVL patients who did not report oscillopsia showed this unusual saccadic pattern, whereas BVL patients who reported oscillopsia did not show this pattern. This inappropriate covert SHIMPs saccade may be an objective indicator of how some patients with vestibular loss have learned to trigger covert saccades during head movements in everyday life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.