This paper focuses on the adsorption of hydrogen sulfide (H₂S) by biochars derived from wastes. The characteristics and mechanisms of hydrogen sulfide (H₂S) adsorption on three different boichars derived from agricultural/forestry wastes through pyrolysis at various temperatures were investigated. In this study, the H₂S breakthrough capacity was measured using laboratory characterization with pH and Fourier-transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H₂S sorption. The sorption capacity of the biochar for H₂S removal is related to the pyrolysis temperature and pH of the surface.
The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.