In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm(-2)) delivered a large areal capacitance of 3.18 F cm(-2) (234.2 F g(-1)) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm(-2)) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm(-3). Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10,000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.