Regular pattern matching is used in numerous application domains, including text processing, bioinformatics, and network security. Patterns are typically expressed with an extended syntax of regular expressions. This syntax includes the computationally challenging construct of bounded repetition or counting, which describes the repetition of a pattern a fixed number of times. We develop a specialized in-memory hardware architecture that integrates counter and bit vector modules into a state-of-the-art in-memory NFA accelerator. The design is inspired by the theoretical model of nondeterministic counter automata (NCA). A key feature of our approach is that we statically analyze regular expressions to determine bounds on the amount of memory needed for the occurrences of bounded repetition. The results of this analysis are used by a regex-to-hardware compiler in order to make an appropriate selection of counter or bit vector modules. We evaluate our hardware implementation using a simulator based on circuit parameters collected by SPICE simulation in TSMC 28nm CMOS process. We find that the use of counter and bit vector modules outperforms unfolding
The recent breakthroughs of deep neural networks (DNNs) and the advent of billions of Internet of Things (IoT) devices have excited an explosive demand for intelligent IoT devices equipped with domainspecific DNN accelerators. However, the deployment of DNN accelerator enabled intelligent functionality into real-world IoT devices still remains particularly challenging. First, powerful DNNs often come at prohibitive complexities, whereas IoT devices often suffer from stringent resource constraints. Second, while DNNs are vulnerable to adversarial attacks especially on IoT devices exposed to complex real-world environments, many IoT applications require strict security. Existing DNN accelerators mostly tackle only one of the two aforementioned challenges (i.e., efficiency or adversarial robustness) while neglecting or even sacrificing the other. To this end, we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator co-design framework aiming at winning both the adversarial robustness and efficiency of DNN accelerators. Specifically, we first propose a Random Precision Switch (RPS) algorithm that can effectively defend DNNs against adversarial attacks by enabling random DNN quantization as an in-situ model switch during training and inference. Furthermore, we propose a new precision-scalable accelerator featuring (1) a new precision-scalable MAC unit architecture which spatially tiles the temporal MAC units to boost both the achievable efficiency and flexibility and (2) a systematically optimized dataflow that is searched by our generic accelerator optimizer. Extensive experiments and ablation studies validate that our 2-in-1 Accelerator can not only aggressively boost both the adversarial robustness and efficiency of DNN accelerators under various attacks, but also naturally support instantaneous robustness-efficiency trade-offs adapting to varied resources without the necessity of DNN retraining. We believe our 2-in-1 Accelerator has opened up an exciting perspective for robust and efficient accelerator design.
CCS CONCEPTS• Computer systems organization → Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.