Abstract. In this paper we present a nonconforming finite element method for solving fourth order curl equations in three dimensions arising from magnetohydrodynamics models. We show that the method has an optimal error estimate for a model problem involving both (∇×) 2 and (∇×) 4 operators. The element has a very small number of degrees of freedom, and it imposes the inter-element continuity along the tangential direction which is appropriate for the approximation of magnetic fields. We also provide explicit formulae of basis functions for this element.
In this paper, we propose an inexact Uzawa method with variable relaxation parameters for iteratively solving linear saddle-point problems. The method involves two variable relaxation parameters, which can be updated easily in each iteration, similar to the evaluation of the two iteration parameters in the conjugate gradient method. This new algorithm has the advantage over most existing Uzawa-type algorithms: it is always convergent without any apriori estimates on the spectrum of the preconditioned Schur complement matrix, which may not be easy to achieve in applications. The rate of the convergence of the inexact Uzawa method is analysed. Numerical results of the algorithm applied for the Stokes problem and a purely linear system of algebraic equations are presented.
In this paper, we consider some nonlinear inexact Uzawa methods for iteratively solving linear saddle-point problems. By means of a new technique, we first give an essential improvement on the convergence results of Bramble-Paschiak-Vassilev for a known nonlinear inexact Uzawa algorithm. Then we propose two new algorithms, which can be viewed as a combination of the known nonlinear inexact Uzawa method with the classical steepest descent method and conjugate gradient method respectively. The two new algorithms converge under very practical conditions and do not require any apriori estimates on the minimal and maximal eigenvalues of the preconditioned systems involved, including the preconditioned Schur complement. Numerical results of the algorithms applied for the Stokes problem and a purely linear system of algebraic equations are presented to show the efficiency of the algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.