Aims
Sialylation is up-regulated during the development of cardiac hypertrophy. Sialyltransferase7A (Siat7A) mRNA is consistently over-expressed in the hypertrophic left ventricle of hypertensive rats independently of genetic background. The aims of this study were: (i) to detect the Siat7A protein levels and its roles in the pathological cardiomyocyte hypertrophy; (ii) to elucidate the effect of sialylation mediated by Siat7A on the transforming-growth-factor-β-activated kinase (TAK1) expression and activity in cardiomyocyte hypertrophy; and (iii) to clarify hypoxia-inducible factor 1 (HIF-1) expression was regulated by Siat7A and transactivated TAK1 expression in cardiomyocyte hypertrophy.
Methods and results
Siat7A protein level was increased in hypertrophic cardiomyocytes of human and rats subjected to chronic infusion of angiotensin II (ANG II). Delivery of adeno-associated viral (AAV9) bearing shRNA against rat Siat7A into the left ventricular wall inhibited ventricular hypertrophy. Cardiac-specific Siat7A overexpression via intravenous injection of an AAV9 vector encoding Siat7A under the cardiac troponin T (cTNT) promoter aggravated cardiac hypertrophy in ANG II-treated rats. In vitro, Siat7A knockdown inhibited the induction of Sialyl-Tn (sTn) antigen and cardiomyocyte hypertrophy stimulated by ANG II. Mechanistically, ANG II induced the activation of TAK1-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling in parallel to up-regulation of Siat7A in hypertrophic cardiomyocytes. Siat7A knockdown inhibited activation of TAK1-NF-κB pathway. Interestingly, HIF-1α expression was increased in cardiomyocytes stimulated by ANG II but decreased after Siat7A knockdown. HIF-1α knockdown efficiently decreased TAK1 expression. ChIP and luciferase assays showed that HIF-1α transactivated the TAK1 promoter region (nt −1285 to −1274 bp) in the cardiomyocytes following ANG II stimulus.
Conclusion
Siat7A was up-regulated in hypertrophic myocardium and promoted cardiomyocyte hypertrophy via activation of the HIF-1α-TAK1-NF-κB pathway.
Ginsenoside Re (GRe) exerts diverse effects. Based on our observations, the present study was designed to investigate GRe-exerted bidirectional regulation (BR) on the contractility of isolated jejunal segment. Six pairs of different low and high contractile states of rat jejunal segment were established and used in the study. Stimulatory effects on the contractility of jejunal segment were exerted by GRe (10.0 μM) in all 6 low contractile states, and inhibitory effects were exerted in all 6 high contractile states, indicating that GRe exerted BR on the contractility of jejunal segment. The effects of GRe on the phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK) and MLCK mRNA expression in jejunal segment in low and high contractile states were also bidirectional. GRe-exerted BR was abolished in the presence of neurotoxin tetrodotoxin or Ca2+ channel blocker verapamil or c-Kit receptor tyrosine kinase inhibitor imatinib. Atropine blocked the stimulatory effects of GRe on jejunal contractility in low-Ca2+-induced low contractile state; phentolamine, propranolol and l-NG-nitro-arginine blocked the inhibitory effects in high-Ca2+-induced high contractile state, respectively. In summary, GRe-exerted BR depends on jejunal contractile state and requires the presence of enteric nervous system, Ca2+, and interstitial cells of Cajal; the stimulatory effects of GRe on jejunal contractility are related to cholinergic stimulation and inhibitory effects are related to adrenergic activation and nitric oxide relaxing mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.