To reduce the harm caused to the environment by fuel combustion and meet the increasingly stringent emission standards, the sulfur content of fuels should be reduced. Dibenzothiophene, benzothiophene, and their derivatives are sulfur-containing components of fuels that are difficult to desulfurize and can therefore cause great environmental damage. Biodesulfurization is a desulfurization method that has the advantage of being able to remove dibenzothiophene and its derivatives removed easily under conditions that are relatively mild when compared with hydrodesulfurization. This paper introduces the advantages of thermophilic biodesulfurization compared with mesophilic biodesulfurization; analyzes the desulfurization mechanism, including the desulfurization pathways and enzymic systems of desulfurization bacteria; and discusses the application of biodesulfurization in oil desulfurization. The main problems existing in biodesulfurization and possible solutions are also analyzed in this paper. Biological desulfurization is a promising method for desulfurization; accordingly, more studies investigating biodesulfurization of actual oil are needed to enable the industrialized application of biodesulfurization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.