The impact of PM2.5 on epithelial cells is a pivotal process leading to many lung pathological changes and pulmonary diseases. In addition to PM2.5 direct interaction with epithelia, macrophages that engulf PM2.5 may also in uence the function of epithelial cells. However, among the toxic researches of PM2.5, there is a lack of evaluation of direct or indirect exposure model on human bronchial epithelial cell against PM2.5. In this present research, PM2.5-exposed human bronchial epithelial cell line (BEAS-2B) serves as the direct interaction model, while the contrast is to indirect stimulation model, which takes advantage of transwell co-culture system to carry out that PM2.5 is promptly contacted with macrophages rather than BEAS-2B. By comparing these two modes of interaction, we determined the viability of BEAS-2B and mRNA and/or protein expression pro le of transcription factors Nrf2,NF-kB and according in ammatory indicators, with a view to evaluating the effects of different interaction modes of PM2.5 on epithelial cell damage in vitro. We have found that macrophage involvement may protect epithelia from PM2.5 cytotoxic effect, while strengthen the in ammation response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.