SOX2 is an HMG box containing transcription factor that has been implicated in various types of cancer, but its role in colorectal cancers (CRC) has not been studied. Here we show that SOX2 is overexpressed in CRC tissues compared with normal adjacent tissues using immunohistochemical staining and RT-PCR. We also observed an increased SOX2 expression in nucleus of colorectal cancer tissues (46%, 14/30 cases vs. 7%, 2/30 adjacent tissues). Furthermore, knockdown of SOX2 in SW620 colorectal cancer cells decreased their growth rates in vitro cell line, and in vivo in xenograft models. ChIP-Seq analysis of SOX2 revealed a consensus sequence of wwTGywTT. An integrated expression profiling and ChIP-seq analysis show that SOX2 is involved in the BMP signaling pathway, steroid metabolic process, histone modifications, and many receptor-mediated signaling pathways such as IGF1R and ITPR2 (Inositol 1,4,5-triphosphate receptor, type 2).
SOX2 is a high mobility group (HMG) box containing transcription factor that has been implicated in various types of cancer, but its role in colorectal cancers (CRC) has not been studied. Here we show that SOX2 is overexpressed in CRC tissues compared with normal adjacent tissues using immunohistochemical staining and RT-PCR. We also observed an increased SOX2 expression in nucleus of colorectal cancer tissues (46%, 14/30 cases vs. 7%, 2/30 adjacent tissues). Furthermore, knockdown of SOX2 in SW620 colorectal cancer cells decreased their growth rates in vitro cell line, and in vivo in xenograft models. ChIP-seq analysis of SOX2 revealed a consensus sequence of wwTGywTT. An integrated expression profiling and ChIP-seq analysis show that SOX2 is involved in the BMP signaling pathway, steroid metabolic process, histone modifications, and many receptor-mediated signaling pathways such as IGF1R and ITPR2 (Inositol 1,4,5-triphosphate receptor, type 2).
During 2012, about 782,500 new liver cancer cases were diagnosed and 745,500 deaths occurred all around the world. Liver cancer is the 2nd major cause of cancer death in men around the world and in underdeveloped countries. Dysregulation of the balance between proliferation and cell death, hepatitis B virus infection and hepatitis C virus chronic infection, and carcinogenic micro RNAs mainly contribute to the development and progression of liver cancer. Under physiological status, Src maintained the foundation of cells. While in liver cancer, it is known that the basic activities of cells are apparently disturbed possibly by Src. The mechanisms underlying the development and progression of liver cancer is needed to elucidate. In this study, we summarized newly found regulation pathway of SRC signaling, and clinical experience with inhibitors of Src signaling, such as, novel molecules that directly or indirectly targeted Src signaling which can be utilized in the treatment of liver cancer.
Colorectal cancer (CRC) is the third most common cancer in the world. Early diagnosis of colorectal cancer is the key to reducing the death rate of CRC patients. Predicting the response to current therapeutic modalities of CRC will also have a great impact on patient care. This review summarizes recent advances and patents in biomarker discovery in CRC under five major categories; including genomic changes, expression changes, mutations, epigenetic changes and microRNAs. The interesting patents include: 1) a patent for a method to differentiate normal exfoliated cells from cancer cells based on whether they were subjected to apoptosis and DNA degradation; 2) A model (PM-33 multiple molecular marker model) based on expression changes of up-regulation of the MDM2, DUSP6, and NFl genes down-regulation of the RNF4, MMD and EIF2S3 genes, which achieved an 88% sensitivity, and an 82% specificity for CRC diagnosis; 3) gene mutations in PTEN, KRAS, PIK3CA for predicting the response to anti-EGFR therapies, a common drug used for CRC treatment; 4) patents on epigenetic changes of ITGA4, SEPT9, ALX4, TFAP2E FOXL2, SARM1, ID4 etc. and many key miRNAs. Finally, future directions in the fields were commented on or suggested, including the combination of multiple categories of biomarkers and pathway central or network-based biomarker panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.