Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.) for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic work of ASD is related to the variation of morphological features of brain thickness that is different from texture analysis. These techniques are based on imaging shape features that can be used with predictive models for predicting ASD. This review explores the progress of ASD-based radiomics with a brief description of ASD and the current non-invasive technique used to classify between ASD and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques will be also described. To consider the texture analysis with deep CNNs, more investigations are suggested to be integrated with additional validation steps on various MRI sites.
With the integration of intelligent algorithm into the supply chain process, the fficiency of supply chain planning has been further improved through automatic prediction and decision-making. Although intelligent algorithms are developing, their challenges including real-time nature of supply chain planning and the complexity of scenarios hinder their true potential. In this study, we proposed an improved genetic algorithm (GA)-long short-term memory (LSTM) neural network prediction algorithm to solve various optimization planning problems for the supply chain from suppliers to production enterprises. Specifically, to determine stable suppliers, we first constructed the technique for order preference by similarity to ideal solution (TOPSIS) model to quantitatively evaluate each supplier, and the rationality of the index weight of the TOPSIS algorithm can be enhanced by the entropy method. Finally, the GA and LSTM were used to solve the decision-making and planning problem in raw material supply chain. Our results indicate that the algorithm we proposed can not only efficiently solve the decision planning problem in the raw material supply chain, but it also reasonably analyzes the suppliers quantitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.