We previously found that human mesenchymal stem cells (MSC) or its conditioned medium restored lung protein permeability and reduced alveolar inflammation following E.coli endotoxin-induced acute lung injury (ALI) in an ex vivo perfused human lung in part through the secretion of soluble factors such as keratinocyte growth factor (KGF). Recently, MSC were found to release microvesicles (MV) that were biologically active because of the presence of mRNA or miRNA with reparative properties. MVs are circular fragments of membrane released from the endosomal compartment as exosomes or shed from the surface membranes. The current studies were designed to determine if MVs released by human bone marrow derived MSCs would be effective in restoring lung protein permeability and reducing inflammation in E.coli endotoxin-induced ALI in C57BL/6 mice. The intra-tracheal instillation of MVs improved several indices of ALI at 48 h. Compared to endotoxin-injured mice, MVs reduced extravascular lung water by 43% and reduced total protein levels in the bronchoalveolar lavage (BAL) fluid by 35%, demonstrating a reduction in pulmonary edema and lung protein permeability. MVs also reduced the influx of neutrophils and macrophage inflammatory protein-2 levels in the BAL fluid by 73% and 49% respectively, demonstrating a reduction in inflammation. KGF siRNA-pretreatment of MSC partially eliminated the therapeutic effects of MVs released by MSCs, suggesting that KGF protein expression was important for the underlying mechanism. In summary, human MSC derived microvesicles were therapeutically effective following E.coli endotoxin-induced ALI in mice in part through the expression of KGF mRNA in the injured alveolus.
Bone marrow-derived mesenchymal stem cells (MSCs) can serve as a vehicle for gene therapy. Angiopoietin-1 (Ang1) is a critical factor for endothelial survival and vascular stabilization via the inhibition of endothelial permeability and leukocyte-endothelium interactions. We hypothesized that MSC-based Ang1 gene therapy might be a potential therapeutic approach for lipopolysaccharide (LPS)-induced lung injury. MSCs were isolated from 6 week-old inbred male mice and transduced with the Ang1 gene, using a lentivirus vector. The MSCs showed no significant phenotypic changes after transduction. In the in vivo mouse model, the LPS-induced lung injury was markedly alleviated in the group treated with MSCs carrying Ang1 (MSCs-Ang1), compared with groups treated with MSCs or Ang1 alone. The expression of Ang1 protein in the recipient lungs was increased after MSCs-Ang1 administration. The histopathological and biochemical indices of LPS-induced lung injury were improved after MSCs-based Ang1 gene treatment. MSCs-Ang1 administration also reduced pulmonary vascular endothelial permeability and the recruitment of inflammatory cells into the lung. Cells of MSC origin could be detected in the recipient lungs for 2 weeks after injection with MSCs. These results suggest that MSCs and Ang1 have a synergistic role in the treatment of LPS-induced lung injury. MSC-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.