BackgroundNKX2-5, GATA4 and HAND1 are essential for heart development, however, little is known regarding their epigenetic regulation in the pathogenesis of tetralogy of fallot (TOF).MethodsMethylation levels were measured in three regions of NKX2-5 (M1: -1596 bp ~ -1374 bp, M2: -159 bp ~ 217 bp and M3: 1058 bp ~ 1524 bp), one region of GATA4 (M: -392 bp ~ 107 bp) and three regions of HAND1 (M1: -887 bp ~ -414 bp, M2: -436 bp ~ 2 bp and M3: 37 bp ~ 398 bp) using the Sequenom MassARRAY platform. QRT-PCR was used to analyze NKX2-5 and HAND1 mRNA levels in the right ventricular myocardium of TOF patients.ResultsTOF patients had a significantly higher NKX2-5_M3 median methylation level than controls (41.65% vs. 22.18%; p = 0.0074; interquartile range [IQR]: 30.46%–53.35%, N = 30 and 20.07%–24.31%, N = 5; respectively). The HAND1_M1 median methylation level was also significantly higher in TOF patients than controls (30.05% vs. 17.54%; p = 0.0054; IQR: 20.77%–40.89%, N = 30 and IQR: 14.69%–20.64%; N = 6; respectively). The methylation statuses of NKX2-5_M1, NKX2-5_M2, GATA4_M, HAND1_M2 or HAND1_M3 were not significantly different in TOF patients compared to controls. The methylation values for NKX2-5_M3 were negatively correlated with mRNA levels (r = - 0.463, p = 0.010, N = 30) and there was a significant association between HAND1_M1 methylation status and mRNA levels (r = - 0.524, p = 0.003, N = 30) in TOF patients.ConclusionsAberrant methylation statuses of the NKX2-5 gene body and HAND1 promoter regions are associated with the regulation of gene transcription in TOF patients and may play an important role in the pathogenesis of TOF.
Background Panax notoginseng is one of the most valuable traditional Chinese medicines. Polysaccharides in P. notoginseng has been shown to significantly reduce the incidence of human diseases. However the application of fermentation technology in Panax notoginseng is not common, and the mechanism of action of P. notoginseng polysaccharides produced by fermentation is still unclear. The specific biological mechanisms of fermented P. notoginseng polysaccharides (FPNP) suppresses H2O2-induced apoptosis in human dermal fibroblast (HDF) and the underlying mechanism are not well understood. Methods In this study, the effects of water extracted and fermentation on concentration of polysaccharides in P. notoginseng extracts were analyzed. After the H2O2-induced HDF model of oxidative damage was established, and then discussed by the expression of cell markers, including ROS, MDA, SOD, CAT, GSH-Px and MMP-1, COL-I, ELN, which were detected by related ELISA kits. The expression of TGF-β/Smad pathway markers were tested by qRT-PCR to determine whether FPNP exerted antioxidant activity through TGF-β signaling in HDF cells. Results The polysaccharide content of Panax notoginseng increased after Saccharomyces cerevisiae CGMCC 17452 fermentation. In the FPNP treatment group, ROS and MDA contents were decreased, reversed the down-regulation of the antioxidant activity and expression of antioxidant enzyme (CAT, GSH-Px and SOD) induced by H2O2. Furthermore, the up-regulation in expression of TGF-β, Smad2/3 and the down-regulation in the expression of Smad7 in FPNP treated groups revealed that FPNP can inhibit H2O2-induced collagen and elastin injury by activating TGF-β/Smad signaling pathway. Conclusion It was shown that FPNP could inhibit the damage of collagen and elastin induced by H2O2 by activating the TGF-β/Smad signaling pathway, thereby protecting against the oxidative damage induced by hydrogen peroxide. FPNP may be an effective attenuating healing agent that protects the skin from oxidative stress and wrinkles.
In this study, Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatograph‐liquid chromatography (GPC‐LC), and scanning electron microscopy (SEM) were used to analyze the molecular characteristics of fermented Dendrobium officinale polysaccharides (FDOP) by Lactobacillus delbrueckii bulgaricus. The characteristic structural peak of FDOP was more prominent, showing a smaller molecular structure, and its porous structure showed better water solubility. The protective effect of FDOP on the damage of human skin fibroblasts (HSF) caused by ultraviolet (UV) radiation was investigated by evaluating its antioxidative and antiaging indices. The results showed that the antioxidant capacity of HSF was improved, and the breakdown of collagen, elastin, and hyaluronic acid was reduced, thus providing effective protection to the skin tissue. The antioxidative property of FDOP was explored using Nf‐E2‐related factor 2‐small interfering RNA‐3 (Nrf2‐siRNA‐3) (Nrf2‐si3) and qRT‐PCR (quantitative reverse transcription polymerase chain reaction), and the antiaging property of FDOP was explored using Western Blot and qRT‐PCR. The results show that FDOP can up‐regulate signal transduction of the Nrf2/Keap1 (Kelch‐like ECH‐associated protein 1) and transforming growth factor‐β (TGF‐β)/Smads pathways to reduce antioxidative damage and antiaging effects. Therefore, this study provides a theoretical basis for FDOP as a novel functional agent that can be used in the cosmetic industry.
Background Cannabidiol (CBD) is a non-psychoactive phytocannabinoid constituent of Cannabis sativa with pain-relieving and anti-inflammatory properties. With the emphasis on natural ingredients in cosmetics, CBD has become a new cosmetic ingredient due to its ability to alleviate inflammation. However, in-depth studies that directly compare the effective mechanism and the therapeutic potential of CBD are still needed. Purpose The aim of the present study was to investigate the anti-inflammatory effect of CBD in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and compare it to dexamethasone (DEX). Methods RAW264.7 macrophages in the logarithmic growth phase were incubated in the presence or absence of LPS. After that, the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. A luciferase reporter assay for nuclear factor kappa B (NF-κB) was performed, and the phosphorylation levels of the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways were measured. Results The present study indicated that CBD had a similar anti-inflammatory effect to DEX by attenuating the LPS-induced production of NO, IL-6, and TNF-α. However, only CBD attenuated JNK phosphorylation levels, and only DEX attenuated IKK phosphorylation levels. Conclusion These results suggested that CBD and DEX exhibit similar anti-inflammatory effects on LPS-induced RAW264.7 macrophages mainly through suppressing the MAPK and NF-κB signaling pathways, but with different intracellular mechanisms. These findings suggested that CBD may be considered a natural anti-inflammatory agent for protecting skin from immune disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.