Small noncoding microRNAs (miRNAs) have been shown to be abnormally expressed in every tumor type examined. The importance of miRNAs as potential cancer prognostic indicators is underscored by their involvement in the regulation of basic cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, miRNA expression profiles of head and neck squamous cell carcinoma (HNSCC) tumor and adjacent normal tissue were examined by microarray analysis and validated by quantitative TaqMan real-time polymerase chain reaction. Using TaqMan real-time polymerase chain reaction we measured the quantitative associations between a subset of miRNAs identified on microarrays in primary tumors at diagnosis and cancer survival in a cohort of 104 HNSCC patients undergoing treatment with curative intent. The majority of miRNAs exhibiting altered expression in primary human HNSCC tumors (including miR-1, miR-133a, miR-205, and let7d) show lower expression levels relative to normal adjacent tissue. In contrast, hsa-miR-21 is frequently overexpressed in human HNSCC tumors. Using univariate and multivariable statistical models we show that low levels of hsa-miR205 are significantly associated with loco-regional recurrence independent of disease severity at diagnosis and treatment. In addition , combined low levels of hsa-miR-205 and hsa-let-7d expression in HNSCC tumors are significantly associated with poor head and neck cancer survival Our results show that miRNA expression levels can be used as prognostic markers of head and neck cancer.
Background Internal migrant workers are a large population in China. Current health related studies among this population mainly focused on infectious disease, maternal health and occupational diseases and injuries. However, very limited studies were paid attention to mental health of migrant workers though it is an important public health issue. Aims The current study aims to understand prevalence of depression symptoms and factors associated with depression among Chinese migrant workers using novel methods to develop a comprehensive sample. Methods Respondent-driven sampling (RDS) was employed to recruit the target population, who are required 1) not to hold a hukou indicative of living in central areas or near suburbs of Chengdu city; 2) to be 16 years or older; 3) not to be a student. The Center for Epidemiologic Depression Scale (CES-D) was used to measure depression symptoms of migrant workers. And then Structural Equation Model (SEM) was applied to explore factors associated with depression among Chinese migrant workers. Results Among 1,180 migrant workers, 23.7% of them had clinically relevant depression symptoms (CES-D score >= 16), and 12.8% were consistent with a clinical diagnosis of depression (CES-D score >= 21). Self-rated economic status, city adaptation status, and self-rated health had negative effects on depression. Social economic status (SES) affected depression, and was mediated by self-rated economic status and self-rated health. City adaptation status was affected by length of residence in the city, satisfaction with one’s job, and the social support that one could obtain while living in the city. Conclusions The findings indicated a higher prevalence of depression symptoms among migrant workers comparing to general population reported by previous studies, identified possible factors associated with depression symptoms, and also explored relationships between these factors. Our study provides a model to understand mental health of Chinese internal migrant workers and to generate important research questions for the future.
Background Continual expression of PD-L1 in tumor cells is critical for tumor immune escape and host T cell exhaustion, however, knowledge on its clinical benefits through inhibition is limited in breast cancer. N6-methyladenosine (m6A) plays a crucial role in multiple biological activities. Our study aimed to investigate the regulatory role of the m6A modification in PD-L1 expression and immune surveillance in breast cancer. Methods MeRIP-seq and epitranscriptomic microarray identified that PD-L1 is the downstream target of METTL3. MeRIP-qPCR, absolute quantification of m6A modification assay, and RIP-qPCR were used to examine the molecular mechanism underlying METTL3/m6A/IGF2BP3 signaling axis in PD-L1 expression. B-NDG and BALB/c mice were used to construct xenograft tumor models to verify the phenotypes upon METTL3 and IGF2BP3 silencing. In addition, breast cancer tissue microarray was used to analyze the correlation between PD-L1 and METTL3 or IGF2BP3 expression. Results We identified that PD-L1 was a downstream target of METTL3-mediated m6A modification in breast cancer cells. METTL3 knockdown significantly abolished m6A modification and reduced stabilization of PD-L1 mRNA. Additionally, METTL3-mediated PD-L1 mRNA activation was m6A-IGF2BP3-dependent. Moreover, inhibition of METTL3 or IGF2BP3 enhanced anti-tumor immunity through PD-L1-mediated T cell activation, exhaustion, and infiltration both in vitro and in vivo. PD-L1 expression was also positively correlated with METTL3 and IGF2BP3 expression in breast cancer tissues. Conclusion Our study suggested that METTL3 could post-transcriptionally upregulate PD-L1 expression in an m6A-IGF2BP3-dependent manner to further promote stabilization of PD-L1 mRNA, which may have important implications for new and efficient therapeutic strategies in the tumor immunotherapy.
The quality of mitochondria in skeletal muscle is essential for maintaining metabolic homeostasis during adaptive stress responses. However, the precise control mechanism of muscle mitochondrial quality and its physiological impacts remain unclear. Here, we demonstrate that FUNDC1, a mediator of mitophagy, plays a critical role in controlling muscle mitochondrial quality as well as metabolic homeostasis. Skeletal-muscle-specific ablation of FUNDC1 in mice resulted in LC3-mediated mitophagy defect, leading to impaired mitochondrial energetics. This caused decreased muscle fat utilization and endurance capacity during exercise. Interestingly, mice lacking muscle FUNDC1 were protected against high-fat-diet-induced obesity with improved systemic insulin sensitivity and glucose tolerance despite reduced muscle mitochondrial energetics. Mechanistically, FUNDC1 deficiency elicited a retrograde response in muscle that upregulated FGF21 expression, thereby promoting the thermogenic remodeling of adipose tissue. Thus, these findings reveal a pivotal role of FUNDC1-dependent mitochondrial quality control in mediating the muscle-adipose dialog to regulate systemic metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.