Generative Adversarial Networks (GANs) are a powerful class of deep generative models. In this paper, we extend GAN to the problem of generating data that are not only close to a primary data source but also required to be different from auxiliary data sources. For this problem, we enrich both GANs' formulations and applications by introducing pushing forces that thrust generated samples away from given auxiliary data sources. We term our method Push-and-Pull GAN (P2GAN). We conduct extensive experiments to demonstrate the merit of P2GAN in two applications: generating data with constraints and addressing the mode collapsing problem. We use CIFAR-10, STL-10, and ImageNet datasets and compute Fréchet Inception Distance to evaluate P2GAN's effectiveness in addressing the mode collapsing problem. The results show that P2GAN outperforms the state-of-the-art baselines. For the problem of generating data with constraints, we show that P2GAN can successfully avoid generating specific features such as black hair.
We propose a new formulation for learning generative adversarial networks (GANs) using optimal transport cost (the general form of Wasserstein distance) as the objective criterion to measure the dissimilarity between target distribution and learned distribution. Our formulation is based on the general form of the Kantorovich duality which is applicable to optimal transport with a wide range of cost functions that are not necessarily metric. To make optimising this duality form amenable to gradient-based methods, we employ a function that acts as an amortised optimiser for the innermost optimisation problem. Interestingly, the amortised optimiser can be viewed as a mover since it strategically shifts around data points. The resulting formulation is a sequential min-max-min game with 3 players: the generator, the critic, and the mover where the new player, the mover, attempts to fool the critic by shifting the data around. Despite involving three players, we demonstrate that our proposed formulation can be trained reasonably effectively via a simple alternative gradient learning strategy. Compared with the existing Lipschitz-constrained formulations of Wasserstein GAN on CIFAR-10, our model yields significantly better diversity scores than weight clipping and comparable performance to gradient penalty method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.