We demonstrate an electro-optic (EO) switch or in general, an EO controllable power divider based on a periodically poled lithium niobate (PPLN) polarization mode converter (PMC) and a five-waveguide adiabatic coupler integrated on a Ti:LN photonic circuit chip. In this integrated photonic circuit (IPC) device, the PPLN works as an EO controllable polarization rotator (and therefore a PMC), while the adiabatic coupler functions as a broadband polarization beam splitter (PBS). The 1-cm long PPLN EO PMC of the IPC device is characterized to have a half-wave (or switching) voltage of Vπ∼20 V and a conversion bandwidth of ∼2.6 nm. The splitting ratios of the adiabatic coupler PBS in the IPC device are >99% for both polarization modes over a broad spectral range from 1500–1640 nm. The EO mode of the implemented IPC device is activated when the PPLN EO PMC section is driven by an external voltage; the characterized EO switching/power division behavior of the device is in good agreement with the theoretical fit. The tunability of the EO IPC device in the 100-nm experimental spectral range is also demonstrated via the temperature tuning. The featured broad tunability and high integrability of the EO device presented in this study facilitates it to be an advantageous building block for realizing an on-chip photonic system.
We report the demonstration of an electro-optic (EO) switchable dual-wavelength (1064- and 1342-nm) Nd:YVO4 laser based on an aperiodically poled lithium niobate (APPLN) chip whose domain structure is designed using aperiodic optical superlattice (AOS) technology. The APPLN works as a wavelength-dependent EO polarization-state controller in the polarization-dependent laser gain system to enable switching among multiple laser spectra simply by voltage control. When the APPLN device is driven by a voltage-pulse train modulating between a VHQ (in which target laser lines obtain gain) and a VLQ (in which laser lines are gain suppressed), the unique laser system can produce Q-switched laser pulses at dual wavelengths 1064 and 1342 nm, single wavelength 1064 nm, and single wavelength 1342 nm, as well as their non-phase-matched sum-frequency and second-harmonic generations at VHQ = 0, 267, and 895 V, respectively. A laser can benefit from such a novel, to the best of our knowledge, simultaneous EO spectral switching and Q switching mechanisms to increase its processing speed and multiplexity for versatile applications.
We report an electro-optically (EO) switchable source based on a domain-engineered LiNbO3 operating in a closely lying, cross-polarized dual-line Nd:YLF laser. Simultaneous EO spectral switching and Q-switching has been realized in such a novel system.
We demonstrate broadband adiabatic couplers using lithium niobate on insulator (LNOI) waveguides with a footprint reduced by 98% relative to bulk LN devices. LNOI couplers with coupling efficiency >95% across telecom S-C-L bands are obtained.
We demonstrate a novel dual-wavelength Nd:YVO4 laser where either or both of its emission lines can be selected and Q-switched electro-optically using a domain-engineered LiNbO3. Electro-optic switching among five wavelengths from the system is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.