temic expansion of ST2 + Tregs (29,30). IL-33 expressed by fibrogenic/adipogenic progenitors in skeletal muscle has also been shown to regulate skeletal muscle Treg homeostasis and support muscle regeneration (31). Related studies have suggested a direct, cardioprotective role for rIL-33 against hypertrophy resulting from cardiac overload (32) and fibrosis after myocardial infarction (33). However, delivery of rIL-33 also aggravates autoimmune eosinophilic pericarditis during coxsackievirus B3 infection (34), suggesting that IL-33 can contribute to cardiac inflammation. IL-33 expression has been reported in cardiac fibroblasts (32) and the vasculature ( 35), yet how the expression of this alarmin is modulated in cardiac allografts or impacts outcomes was unknown.Using IL-33-deficient heart grafts in a mouse chronic rejection model we have established that IL-33 stands out among identified alarmins and limits differentiation of proinflammatory macrophages to prevent chronic rejection. Specifically, transplants lacking IL-33 displayed dramatically accelerated chronic rejectionassociated vasculopathy and subsequent fibrosis orchestrated by graft-infiltrating recipient proinflammatory macrophages. IL-33expressing heart grafts in recipients with ST2-deficient macrophages also displayed increased graft infiltration by proinflammatory macrophages and accelerated graft loss. Mechanistic studies demonstrated that IL-33 promoted a reparative macrophage phenotype through a metabolic reprograming involving augmented oxidative phosphorylation (OXPHOS) and fatty acid (FA) uptake. We also revealed that IL-33 prevents proinflammatory stimuli-induced disruption of the tricarboxylic acid (TCA) cycle that shifts macrophage metabolism to anaerobic glycolysis and generates proinflammatory metabolites (36,37). Restoration of IL-33 to IL-33-deficient heart transplants using vesicles in ECM-derived hydrogel immediately after transplantation profoundly reduced the frequency of proinflammatory myeloid cells in the graft and prevented graft loss to chronic rejection. Thus, the local delivery of IL-33 in ECM-based materials after transplantation may be a practical and promising biologic for chronic rejection prophylaxis.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Obesity often leads to obesity‐related cardiac hypertrophy (ORCH), which is suppressed by zinc‐induced inactivation of p38 mitogen‐activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH.Mice (4‐week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B‐cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate‐treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate‐induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate‐induced up‐regulation of BCL10 and phospho‐p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress‐mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress‐activated BCL10 expression and p38 MAPK activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.