The chick retina can discern both the sign and the magnitude of optical defocus. Chick eyes were able to integrate blur cues from simultaneously presented images focused either side of the photoreceptors and to modulate their refractive development accordingly. This implies that the complex nature of defocus in the visual environment may play a critical role in the pathogenesis of myopia. The results suggest a rational method for arresting or reversing the development of myopia, which may be useful in the treatment of human myopia if the primate retina is also capable of responding to simultaneously presented opposing defocus cues.
Large area flexible electronics rely on organic or hybrid materials prone to degradation limiting the device lifetime. For many years, photo-oxidation has been thought to be one of the major degradation pathways. However, intense illumination may lead to a burn-in or a rapid decrease in performance for devices completely isolated from corrosive elements as oxygen or moisture. The experimental studies we present in here indicate that a plausible triggering for the burn-in is a spin flip after a UV photon absorption leading to the accumulation of electrostatic potential energy that initiates a rapid destruction of the nanomorpholgy in the fullerene phase of a polymer cell. To circumvent this and achieve highly stable and efficient devices, we induce a robust nano-crystalline ordering in the PCBM phase prior to UV illumination. In that event, PTB7-Th:PC 71 BM cells are shown to exhibit T 80 lifetimes larger than 1.6 years under a continuous UV-filtered 1-sun illumination, equivalent to 7 years for sunlight harvesting at optimal orientation and 10 years for vertical applications.
OH can be successfully treated by endoscopic surgery. CT and MR examination provide characteristic findings for prediction and careful surgical planning.
For the artificial ground freezing (AGF) projects in highly permeable formations, the effect of groundwater flow cannot be neglected. Based on the heat transfer and seepage theory in porous media with the finite element method, a fully coupled numerical model was established to simulate the changes of temperature field and groundwater flow field. Firstly, based on the classic analytical solution for the frozen temperature field, the model’s ability to solve phase change problems has been validated. In order to analyze the influences of different parameters on the closure time of the freezing wall, we performed the sensitivity analysis for three parameters of this numerical model. The analysis showed that, besides the head difference, the thermal conductivity of soil grain and pipe spacing are also the key factors that control the closure time of the frozen wall. Finally, a strengthening project of a metro tunnel with AGF method in South China was chosen as a field example. With the finite element software COMSOL Multiphysics® (Stockholm, Sweden), a three-dimensional (3D) numerical model was set up to simulate the change of frozen temperature field and groundwater flow field in the project area as well as the freezing process within 50 days. The simulation results show that the freezing wall appears in an asymmetrical shape with horizontal groundwater flow normal to the axial of the tunnel. Along the groundwater flow direction, freezing wall forms slowly and on the upstream side the thickness of the frozen wall is thinner than that on the downstream side. The actual pipe spacing has an important influence on the temperature field and closure time of the frozen wall. The larger the actual pipe spacing is, the slower the closing process will be. Besides this, the calculation for the average temperature of freezing body (not yet in the form of a wall) shows that the average temperature change of the freezing body coincides with that of the main frozen pipes with the same trend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.