In this study, the iron-carbon-aluminum (Fe-C-Al) composite filler was prepared by aluminum modification of conventional iron-carbon (Fe-C) micro-electrolysis with a no-burn method. The optimal process conditions for Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater were determined to be the aluminum metal ratio of 14 wt% and solids dosing of 30 g/L. Under the optimal process conditions, Fe-C-Al three-phase micro-electrolysis was performed for the treatment of low concentration phosphorus wastewater (LCPW) with continuous experiment, while iron-carbon fillers before and after treatment were analyzed by XRD and SEM. The results showed that the amount of Fe2+ dissolved in the micro-electrolysis determined the micro-electrolysis phosphorus removal effect, Al promoted the dissolution of Fe2+, and the Fe-C-Al filler had a stable phosphorus removal effect, and the average removal efficiency of phosphorus was 67.40%, which is an average improvement of 29.25% compared with the conventional Fe-C filler. The treatment of LCPW by Fe-C-Al three-phase micro-electrolysis is consistent with a first-order kinetic reaction with apparent activation energy of 38.70 kJ·mol−1, which is controlled by the chemical reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.