Visible-light photocatalysis is a rapidly developing and powerful strategy to initiate organic transformations as it closely adheres to the tenants of green and sustainable chemistry. Generally, most visible-light-induced photochemical reactions occur through single-electron transfer (SET) pathways. Recently, visible-light-induced energy transfer (EnT) reactions have received considerable attentions from the synthetic community as this strategy provides a distinct reaction pathway, and remarkable achievements have been made in this field. In this Minireview, we highlight the most recent advances in visible-light-induced EnT reactions.
Visible-light-induced photocatalytic decarboxylative alkynylations of carboxylic acids have been developed for the first time. The reaction features extremely mild conditions, broad substrate scope, and avoids additional oxidants. Importantly, a decarboxylative carbonylative alkynylation has also been carried out in the presence of carbon monoxide (CO) under photocatalytic conditions, which affords valuable ynones in high yields at room temperature.
A novel visible-light-responsive chiral ligand has been developed by grafting a triplet state photosensitizer to chiral bisoxazoline ligands. Complexation of this ligand with Ni(acac) results in a powerful catalyst for the asymmetric oxidation reaction of β-ketoesters, which uses oxygen or air as the green oxidant and visible light or sunlight as the ideal driving force. Using this protocol, products containing the α-hydroxy-β-dicarbonyl motif are produced in high yields and with excellent enantiopurities.
The first asymmetric propargylic radical cyanation was realized through a dual photoredox and copper catalysis. An organic photocatalyst serves to both generate propargyl radicals and oxidize Cu(I) species to Cu(II) species. A chiral Cu complex functions as an efficient organometallic catalyst to resemble the propargyl radical and cyanide in an enantio-controlled manner. Thus, a diverse range of optically active propargyl cyanides were produced with high reaction efficiency and enantioselectivities (28 examples, 57−97% yields and 83−98% ee). Moreover, mechanistic investigations including experiments and density functional theory calculations were performed to illustrate on the reaction pathway and stereochemical results.
Visible-light-driven organic photochemical reactions have attracted substantial attention from the synthetic community. Typically, catalytic quantities of photosensitizers, such as transition metal complexes, organic dyes, or inorganic semiconductors, are necessary to absorb visible light and trigger subsequent organic transformations. Recently, in contrast to these photocatalytic processes, a variety of photocatalyst-free organic photochemical transformations have been exploited for the efficient formation of carbon–carbon and carbon–heteroatom bonds. In addition to not requiring additional photocatalysts, they employ low-energy visible light irradiation, have mild reaction conditions, and enable broad substrate diversity and functional group tolerance. This review will focus on a summary of representative work in this field in terms of different photoexcitation modes.1 Introduction2 Visible Light Photoexcitation of a Single Substrate3 Visible Light Photoexcitation of Reaction Intermediates4 Visible Light Photoexcitation of EDA Complexes between Substrates5 Visible Light Photoexcitation of EDA Complexes between Substrates and Reaction Intermediates6 Visible Light Photoexcitation of Products7 Conclusion and Outlook
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.