Background: Ganoderma lucidum Polysaccharides (GLPS) were found to possess various pharmacological properties including anti-inflammatory and hepatoprotective activities. However, the effect and possible mechanism of GLPS treatment on liver injury have not yet been reported. Therefore, this study aimed to explore the potential anti-inflammatory and hepatoprotective effects and possible mechanism of GLPS in carbon tetrachloride (CCl4)-induced acute liver injury mice. Summary: GLPS significantly reduced the activation of NLRP3 inflammasome and improved liver function in liver injury mice. It significantly inhibited CCl4-induced changes of alanine aminotransferase and aspartate aminotransferase activities in serum, as well as nitric oxide synthase (NOS) and cytochrome P450 2E1 (CYP2E1) activities in liver tissue; it also remarkably decreased levels of liver weight and index, total bilirubin, interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in serum, as well as malondialdehyde and IL-1β in liver tissue. Protein expression levels of liver NLRP3, ASC, and Caspase-1 were also downregulated, while the glutathione level in liver tissue was remarkably enhanced in GLPS groups compared to that of the model group. Key Message: These results suggested that GLPS may be a potential for the prevention and treatment of acute liver injury with liver inflammation. The possible mechanism may be related to the inhibition of free radical lipid peroxidation, NOS, and CYP2E1 activities and activation of liver inflammatory factors.
A mixed ligand coordination compound of copper with ofloxacin (oflo) and phenanthroline (phen) has been synthesized and characterized by means of X-ray single crystal diffraction and spectroscopic methods. Structural features of the coordination compound are described. CD and CV studies of the interactions of the title complex with calf thymus DNA (CT-DNA) show that the complex can bind to CT-DNA by intercalation and electrostatic binding modes. Antibacterial activities of the title compound, a Cu-oflo complex reported earlier and free oflo have been studied against different microorganisms. Both copper complexes enhance the antibacterial activities of the quinolone drugs. The inhibitory effect of the three compounds on two cancer cell lines was measured and the results indicate that the title complex has strongest inhibitory effect.
Allium mongolicum Regel is a desert plant that shows great resistance to wind erosion, drought, and low temperatures and is widely distributed in the desert lands of China. Understanding the molecular mechanisms underlying its drought resistance is essential for uncovering drought resistance genes and improving its beneficial traits. Here, a de novo RNA-Seq assembly analysis was conducted using the roots of 1-month-old seedlings under drought stress. Using pairwise comparisons of untreated plants (CK), 48-hour drought plants (G48h), and 96- hour drought plants (G96h), in total, 2,211 differentially expressed unigenes (DEGs) were obtained. Furthermore, using functional annotation, these DEGs were mainly involved in the plasma membrane, photosynthesis, and secondary carbohydrate metabolism. Moreover, genes involved in the ABA-mediated signaling pathway and secondary metabolism were upregulated in the roots. These results suggest that desert plants may use signaling and secondary metabolic pathways as adaptive responses to drought stress. Collectively, this work could help elucidate the molecular mechanisms underlying the ability of A. mongolicum Regel to respond to drought stress and aid in the selection of novel drought tolerance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.