Objective. This study was undertaken to investigate the effect of lymphatic inhibition on joint and draining lymph node (LN) pathology during the course of arthritis progression in mice.Methods. Tumor necrosis factor (TNF)-transgenic mice were used as a model of chronic inflammatory arthritis. Mice were subjected to contrastenhanced magnetic resonance imaging to obtain ankle and knee joint synovial volumes and draining popliteal LN volumes before and after 8 weeks of treatment with vascular endothelial growth factor receptor 3 (VEGFR-3) neutralizing antibody, VEGFR-2 neutralizing antibody, or isotype IgG. Animals were subjected to near-infrared lymphatic imaging to determine the effect of VEGFR-3 neutralization on lymph transport from paws to draining popliteal LNs. Histologic, immunohistochemical, and reverse transcriptase-polymerase chain reaction analyses were used to examine lymphatic vessel formation and the morphology of joints and popliteal LNs.Results. Compared with IgG treatment, VEGFR-3 neutralizing antibody treatment significantly decreased the size of popliteal LNs, the number of lymphatic vessels in joints and popliteal LNs, lymphatic drainage from paws to popliteal LNs, and the number of VEGF-C-expressing CD11b؉ myeloid cells in popliteal LNs. However, it increased the synovial volume and area of inflammation in ankle and knee joints. VEGFR-2 neutralizing antibody, in contrast, inhibited both lymphangiogenesis and joint inflammation.Conclusion. These findings indicate that lymphangiogenesis and lymphatic drainage are reciprocally related to the severity of joint lesions during the development of chronic arthritis. Lymphatic drainage plays a beneficial role in controlling the progression of chronic inflammation.Lymphatic vessels are present in almost all tissues of the body. They are composed of an extensive network of thin-walled capillaries that drain protein-rich lymph from extracellular spaces (1). Under normal conditions, the major functions of the lymphatic system include maintenance of tissue fluid homeostasis, absorption of fatty acids, and mediation of the afferent immune response (2,3). Recent studies have provided increasing evidence that the lymphatic system also plays key roles in disease processes such as cancer metastasis, lymphedema, obesity, and inflammation (4,5).
Chronic inflammatory disorders, such as rheumatoid arthritis, are often accompanied by systemic bone loss, which is thought to occur through inflammatory cytokine-mediated stimulation of osteoclast resorption and inhibition of osteoblast function. However, the mechanisms involved in osteoblast inhibition remain poorly understood. Here we test the hypothesis that increased Smad ubiquitin regulatory factor 1 (Smurf1)-mediated degradation of the bone morphogenetic protein pathway signaling proteins mediates reduced bone formation in inflammatory disorders. Osteoblasts derived from bone marrow or long bone samples of adult tumor necrosis factor (TNF) transgenic (TNF-Tg) mice were used in this study. TNF decreased the steady-state levels of Smad1 and Runx2 protein similarly to those in long bones of TNF-Tg mice. In the presence of the proteasome inhibitor MG132, TNF increased accumulation of ubiquitinated Smad1 protein. TNF administration over calvarial bones caused decreases in Smad1 and Runx2 protein levels and mRNA expression of osteoblast marker genes in wild-type, but not in Smurf1 ؊/؊ mice. Vertebral bone volume and strength of TNF-Tg/Smurf1 ؊/؊ mice were examined by a combination of micro-CT, bone histomorphometry, and biomechanical testing and compared with those from TNF-Tg littermates. TNF-Tg mice had significantly decreased bone volume and biomechanical properties, which were partially rescued in TNF-Tg/Smurf1 ؊/؊ mice. We conclude that in chronic inflammatory disorders where TNF is increased, TNF induces the expression of ubiquitin ligase Smurf1 and promotes ubiquitination and proteasomal degradation of Smad1 and Runx2, leading to systemic bone loss. Inhibition of ubiquitin-mediated Smad1 and Runx2 degradation in osteoblasts could help to treat inflammation-induced osteoporosis.Osteoporosis and fragility fractures are common and preventable complications of rheumatoid arthritis (RA).2 For example, one study has reported that 53.3% of RA patients had osteoporosis and 19.3% had vertebral fractures, rates that are much higher than those of the general population (1). These complications are thought to occur through inflammatory stimulation of osteoclast bone resorption and inhibition of osteoblast function (2) mediated by cytokines, such as TNF (3-5). TNF and other cytokines are overproduced by various cells in the inflamed joints of RA patients, which lead to severe local erosion of cartilage and bone, as well as periarticular osteopenia and systemic osteoporosis.TNF is a strong inhibitor of osteoblast functions in vitro, but the molecular mechanisms that mediate the inhibitory effects of TNF on osteoblasts have not been fully investigated. TNF inhibits the recruitment of osteoblast progenitors, reduces expression of genes produced by mature osteoblasts, and promotes osteoblast apoptosis through the NF-B pathway (6 -10). It decreases the expression and DNA binding activity of runt-related transcription factor 2 (Runx2), which is partially through suppression of Runx2 gene transcription and destabilization o...
Objective. To develop an in vivo imaging method to assess lymphatic draining function in the K/BxN mouse model of inflammatory arthritis.Methods. Indocyanine green, a near-infrared fluorescent dye, was injected intradermally into the footpads of wild-type mice, mouse limbs were illuminated with an 806-nm near-infrared laser, and the movement of indocyanine green from the injection site to the draining popliteal lymph node (LN) was recorded with a CCD camera. Indocyanine green near-infrared images were analyzed to obtain 5 measures of lymphatic function across time. Images of K/BxN arthritic mice and control nonarthritic littermates were obtained at 1 month of age, when acute joint inflammation commenced, and again at 3 months of age, when joint inflammation became chronic. Lymphangiogenesis in popliteal LNs was assessed by immunochemistry.Results. Indocyanine green and its transport within lymphatic vessels were readily visualized, and quantitative measures were derived. During the acute phase of arthritis, the lymphatic vessels were dilated, with increased indocyanine green signal intensity and lymphatic pulses, and popliteal LNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, the appearance of indocyanine green in lymphatic vessels was delayed. The size and area of popliteal LN lymphatic sinuses progressively increased in the K/BxN mice.Conclusion. Our findings indicate that indocyanine green near-infrared lymphatic imaging is a valuable method for assessing the lymphatic draining function in mice with inflammatory arthritis. Indocyanine green-near-infrared imaging of K/BxN mice identified 2 distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders.
Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research.
Objective To investigate if enhancement of joint lymphangiogenesis by injecting VEGF-C adeno-associated virus (AAV) into joints has therapeutic efficacy in chronic inflammatory arthritis in mice. Methods TNF transgenic (TNF-Tg) mice were used as a model of chronic inflammatory arthritis. Human VEGF-C was cloned into an AAV expression vector to generate AAV-VEGF-C. AAV-VEGF-C or control AAV-Luc was injected into joints of TNF-Tg mice. MRI and lymphatic imaging were used during the 4-months following injection to assess changes in synovial volume and lymph flow from joint tissues to local draining lymph nodes. Joint inflammation, bone erosion and cartilage loss were examined by histologic analyses. Lymphatic vessel formation was assessed using immunohistochemistry. Results Intra-articular administration of AAV-VEGF-C virus significantly attenuated the increase in synovial volume and increased lymphatic vessel number in joint sections compared to AAV-Luc virus during the 4-month-period. This accompanied by reduced inflammation area, bone erosion, cartilage loss, and osteoclast numbers. Lymph flow from joints to local draining lymph nodes was slower in TNF-Tg mice than in wild-type littermates and was significantly improved with AAV-VEGF-C treatment. Conclusion Intra-articular injection of AAV-VEGF-C increased lymphangiogenesis and improved lymphatic drainage from inflamed joints, resulting in attenuation of joint tissue damage. Thus, improvement of joint lymphatic function by local administration of lymphatic growth factors represents a new therapeutic approach for chronic inflammatory arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.