The initial conditions of the cooperative terminal guidance law, which are the terminal conditions of the cooperative midcourse guidance, have a greater impact on its cooperation and guidance precision, so it is worthy of investigating the cooperative midcourse guidance. In addition, the problem of communication delay between the network nodes is inevitable and has a greater impact on the cooperative guidance law. To solve the above problems, a novel distributed cooperative midcourse guidance (DCMG) law with communication delay is proposed by combining the cooperative term with a distributed consensus protocol including communication delay under the directed communication topology. Firstly, a DCMG law with communication delay is designed by combining the trajectory shaping guidance with the distributed protocol including communication delay under the directed communication topology; secondly, the consensus of the proposed DCMG law with communication delay under the directed graph is proved; finally, the effectiveness and superiority of the proposed DCMG law are verified by numerical simulations.
Conductive organic materials are a crucial component of resistive strain sensors because phase separation limits the concentration of inorganic materials in polymer matrices, leading to poor electrical conductivity. However, traditional conductive polymers are not good candidates for use in flexible electric devices due to their low or ultralow sensitivity and stretchability. In this paper, the development of transparent, highly stretchable polymer electrodes by a one‐step solution process is reported. The polymer electrodes tolerate extreme strains exceeding 150% and feature an ionic conductivity of 1.4 × 10−4 S cm−1. These metal‐free electrodes also exhibit a high optical transparency of 60%, suggesting that they have great potential for optoelectronic applications. Strain sensors are fabricated by covering the conductive polymer electrodes with polyimide film in a simple, low‐cost, and scalable process. The as‐assembled strain sensors can be used for both stretching and compressing with high sensitivity (a maximum gauge factor of 1049.9), an ultralow limit of detection (0.5% strain), and excellent reliability and stability (>5000 stretching cycles).
This paper studies the influence of nozzle structure and process parameters on the solid propellant 3D printing process, so as to better guide nozzle structure optimization and process improvement, and realize continuous extrusion and molding of solid propellant. Four characteristic parameters such as nozzle diameter, nozzle shrinkage angle, process temperature, and wall slip coefficient are selected, and the influence of these four parameters on the extrusion speed and pressure of solid propellant slurry in the nozzle is discussed by using the orthogonal test principle and ANSYS/POLYFLOW. The results show that the most significant factor affecting the outlet velocity uniformity index and outlet pressure is the wall slip coefficient, followed by the nozzle diameter, and the influence of temperature and contraction angle is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.