Variational modal decomposition (VMD) has the end effect, which makes it difficult to efficiently obtain fault eigenvalues from rolling bearing fault signals. Inspired by the mirror extension, an improved VMD is proposed. This method combines VMD and mirror extension. The mirror extension is a basic algorithm to inhibit the end effect. A comparison is made with empirical mode decomposition (EMD) for fault diagnosis. Experiments show that the improved VMD outperforms EMD in extracting the fault eigenvalues. The performance of the new algorithm is proven to be effective in real-life mechanical fault diagnosis. Furthermore, in this article, combining with singular value decomposition (SVD), fault eigenvalues are extracted. In this way, fault classification is realized by K-nearest neighbor (KNN). Compared with EMD, the proposed approach has advantages in the recognition rate, which can accurately identify fault types.
Aiming at the problem that real engineering vibration signals are interfered by strong noise, this paper proposes a method combining single channel-independent component analysis (SCICA) and fractal analysis (FD) to reduce the effect of noise on the time-frequency analysis of vibration signals. First, phase space reconstruction is performed on the vibration signal to make the proper input for ICA algorithm. The original is then decomposed into several component signals. The fractal dimension of each component signals is calculated to determine whether the signal should be considered noise. Noisy component signals are then processed by wavelet denoising. Finally, the output signal after noise reduction is reconstructed using the filtered “right” component signals. This paper uses the method to analyze real noisy vibration signal. Experimental results show the effectiveness of the proposed method.
The accuracy of five-axis machine tools is a key performance indicator. Among the various error sources of high precision five-axis machine tools, thermal and geometric errors occupy the majority. Thermal errors have become the largest error source of high precision five-axis machine tools, accounting for about 45% of the total errors. Accurate measurement of thermal errors plays a vital role in improving the accuracy of five-axis machine tools. Taking the Shenyang HTM50100 turning and milling machine tool as an example, this paper proposes a method to measure the thermal error of the machine tool spindle using the five-point test method. In the process of thermal error modeling, we select the temperature key point and analyze the collected data. Finally, we evaluate thermal error model. The method is verified by an experiment. The experiment results show that the method is highly accurate, fast, and easy to use. It provides a theoretical basis and practical method for the measurement of thermal errors on five-axis machine tools. By evaluating the method based on multiple linear regression, the predictive ability of the model is about 77%. Compared with LSTM, the prediction accuracy is improved by 5.08%.
Traditional methods for predicting remaining useful life (RUL) ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of RUL and affecting the normal working of rolling element bearing (REB). To solve the above problem, we propose a hybrid method based on digital twin (DT) and long short-term memory (LSTM). The hybrid method combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the life characteristics analysis of an REB. When the DT system is implemented, we can obtain the theoretical value of RUL. Then, the experimental data is used to train the LSTM model. The output of LSTM is the actual value of RUL. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that the prediction accuracy of the hybrid method is greater than 97.5%, which improves the prediction performance and robustness of RUL. Therefore, the hybrid method is an important technology of REB prediction and health management (PHM). It realizes the early intervention and maintenance of mechanical equipment and ensures the safety of enterprises' production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.