Frequent observations to a quantum system modify its coherent evolution through the Zeno effect and Zeno dynamics. Generally, the measurement process destroys the evolution environment of the monitored system, making repeated observations remain a challenge. Here, using the quantum analogy experiments, we realize and engineer the Zeno effect and Zeno dynamics in optical waveguide arrays, where the optical modes correspond to distinct quantum states, and the temporal evolution is mapped into the spatial propagation. We propose a new, extensible experimental strategy for realizing an optical analog of stroboscopic measurements, which are performed by the build-in, on-demand segmented waveguide portions. The weak-to-strong stroboscopic measurements are realized, where the monitored system undergoes a transition from free evolution to optical Zeno freezing. Setting the measurements in the strong regime, the optical Zeno effect and optical Zeno dynamics are successfully generated, and their relationship is demonstrated in optics. We then propose a novel quantum Zeno slicing approach, which allows us to dynamically engineer the Hilbert space of the monitored system. This generic approach is verified by generating a series of Zeno subspaces with different measurement projectors, based on the quantum-optical analogy. The complexity of light dynamics is largely increased, providing full control of the propagation via steering Zeno dynamics. Our results pave the way for manipulation of quantum states by harnessing Zeno dynamics in integrated photonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.