Although the presence of live microbes in utero remains under debate, newborn gastrointestinal bacteria are undoubtedly important to infant health. Measuring bacteria in meconium is an ideal strategy to understand this issue; however, the low efficiency of bacterial DNA extraction from meconium has limited its utilization. This study aims to improve the efficiency of bacterial DNA extraction from meconium, which generally has low levels of microflora but high levels of PCR inhibitors in the viscous matrix. The research was approved by the ethical committee of the Xiamen Maternity and Child Health Care Hospital, Xiamen, China. All the mothers delivered naturally, and their newborns were healthy. Meconium samples passed by the newborns within 24 h were collected. Each sample was scraped off of a sterile diaper, transferred to a 5-ml sterile tube, and stored at −80°C. For the assay, a freeze-thawing sample preparation protocol was designed, in which a meconium-InhibitEX buffer mixture was intentionally frozen 1–3 times at −20°C, −80°C, and (or) in liquid nitrogen. Then, DNA was extracted using a commercial kit and sequenced by 16S rDNA to verify the enhanced bacterial DNA extraction efficiency. Ultimately, we observed the following: (1) About 30 mg lyophilized meconium was the optimal amount for DNA extraction. (2) Freezing treatment for 6 h improved DNA extraction at −20°C. (3) DNA extraction efficiency was significantly higher with the immediate thaw strategy than with gradient thawing at −20°C, −80°C, and in liquid nitrogen. (4) Among the conditions of −20°C, −80°C, and liquid nitrogen, −20°C was the best freezing condition for both improving DNA extraction efficiency and preserving microbial species diversity in meconium, while liquid nitrogen was the worst condition. (5) Three freeze-thaw cycles could markedly enhance DNA extraction efficiency and preserve the species diversity of meconium microflora. We developed a feasible freeze-thaw pretreatment protocol to improve the extraction of microbial DNA from meconium, which may be beneficial for newborn bacterial colonization studies.
BackgroundEvaluation of the therapeutic effects of cerclage on preterm birth (PTB) caused by cervical incompetence remains challenging. The vaginal microbiome is associated with preterm births. Thus, this study aimed to analyse the vaginal microbiota of patients with cervical incompetence, explore the relationship between the composition of the vaginal microbiota before cervical cerclage and at term delivery, and assess the effect of cervical cerclage on the vaginal microbiota.MethodsPatients (n = 30) underwent cerclage performed by the same surgical team. Vaginal swabs were obtained pre-surgery and seven days post-surgery. A gestational age-matched cohort of healthy pregnant women (n = 20) (no particular abnormality during pregnancy, delivery at term) was used as the control group and sampled during a comparable pregnancy. All collected vaginal swabs were analysed by 16S rRNA gene sequencing.ResultsWhen comparing the healthy control and cervical cerclage groups, the enriched microorganism in the healthy controls was G. Scardovia, and the enriched microorganism of the cerclage was G. Streptococcus. α diversity was significantly increased in patients who received cerclage with preterm delivery compared with those with full-term delivery, and the enriched microorganism was F. Enterococcus. A comparison before and after nonemergency cerclage suggested that the enriched microorganisms were G. Lactobacillus and F. Lactobacillaceae before surgery. After nonemergency cerclage, the enriched microorganisms were F. Enterobacteriaceae and C. Gammaproteobacteria. Vaginal microbiota diversity significantly increased, and the proportion of women with Lactobacillus spp.-depleted microbiomes increased after emergency cerclage. Significant differences in β diversity were found between the groups. Before the emergency cerclage, the enriched microorganisms were G. Lactobacillus, O. Alteromonadales, and P. Firmicutes. After emergency cerclage, the enriched microorganisms were P. Actinobacteria, C. Actinobacteria, P. Proteobacteria, F. Bifidobacteriaceae, O. Bifidobacteriales, G. Gardnerella, and G. Veillonella.ConclusionCerclage (particularly emergency cerclage) may alter the vaginal microbiota by increasing microbiota diversity, decreasing vaginal Lactobacillus abundance, and increasing the abundance of pathogenic bacteria that are not conducive to pregnancy maintenance, thereby affecting surgical efficacy. Therefore, the role of the vaginal microbiome should be considered when developing treatment strategies for pregnant women with cervical incompetence.Clinical trial registrationhttps://www.chictr.org.cn, identifier ChiCTR2100046305.
Preeclampsia (PE), defined as new-onset hypertension and multi-organ systemic complication during pregnancy, is the leading cause of maternal and neonatal mortality and morbidity. With extracellular vesicles research progresses, current data refers to the possibility that ferroptosis may play a role in exosomal effects. Evidence has suggested that ferroptosis may contribute to the pathogenesis of preeclampsia by bioinformatics analyses. The purpose of the current study is to identify the potential ferroptosisrelated genes in syncytiotrophoblast-derived extracellular vesicles (STB-EVs) of preeclampsia using bioinformatics analyses. Clinical characteristics and gene expression data of all samples were obtained from the NCBI GEO database. The differentially expressed mRNAs (DE-mRNAs) in STB-EVs of preeclampsia were screened and then were intersected with ferroptosis genes. Functional and pathway enrichment analyses of ferroptosis-related DE-mRNAs in STB-EVs were performed. Ferroptosis-related hub genes in STB-EVs were identified by Cytoscape plugin CytoHubba with a Degree algorithm using a protein-protein interaction network built constructed from the STRING database. The predictive performance of ferroptosis-related hub genes was determined by a univariate analysis of receiver operating characteristic (ROC). The miRNA-hub gene regulatory network was constructed using the miRwalk database. A total of 1976 DE-mRNAs in STB-EVs were identified and the most enriched item identified by gene set enrichment analysis was signaling by G Protein-Coupled Receptors (normalized enrichment score = 1.238). These DE-mRNAs obtained 26 ferroptosis-related DE-mRNAs. Ferroptosis-related DE-mRNAs of gene ontology terms and Encyclopedia of Genes and Genomes pathway enrichment analysis were enriched significantly in response to oxidative stress and ferroptosis. Five hub genes (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) were found in the constructed protein-protein interaction network with ferroptosis-related DE-mRNAs and the areas under the ROC curves for ALB, NOX4, CDKN2A, TXNRD1, and CAV1 were 0.938 (CI: 0.815−1.000), 0.833 (CI: 0.612−1.000), 0.875 (CI: 0.704−1.000), 0.958 (CI: 0.862−1.000), and 0.854 (CI: 0.652−1.000) in univariate analysis of ROC. We constructed a regulatory network of miRNA-hub gene and the findings demonstrate that hsa-miR-26b-5p, hsa-miR-192-5p, hsa-miR-124-3p, hsa-miR-492, hsa-miR-34a-5p and hsa-miR-155-5p could regulate most hub genes. In this study, we identified several central genes closely related to ferroptosis in STB-EVs (ALB, NOX4, CDKN2A, TXNRD1, and CAV1) that are potential biomarkers related to ferroptosis in preeclampsia. Our findings will provide evidence for the involvement of ferroptosis in preeclampsia and improve the understanding of ferroptosis-related molecular pathways in the pathogenesis of preeclampsia.Abbreviations: ALB = albumin, CAV1 = caveolin 1, CDKN2A = cyclin dependent kinase inhibitor 2A, DEGs = differentially expressed genes, DE-mRNAs = differentially expressed mRNAs, EVs = extracellular v...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.