Graduate programs emerging in universities over recent decades support the advanced study of sustainability issues in complex socio-environmental systems. Constructing the problem-scope to address these issues requires graduate students to integrate across disciplines and synthesize the social and natural dimensions of sustainability. Graduate programs that are designed to foster inter-and transdisciplinary research acknowledge the importance of training students to use integrative research approaches. However, this training is not available in all graduate programs that support integrative research, often requiring students to seek external training opportunities. We present perspectives from a group of doctoral students with diverse disciplinary backgrounds conducting integrative research in universities across the United States who participated in a 10-day, National Science Foundation-funded integrative research training workshop to learn and develop socio-environmental research skills. Following the workshop, students conducted a collaborative autoethnographic study to share pre-and postworkshop research experiences and discuss ways to increase integrative research training opportunities. Results reveal that students, regardless of disciplinary background, face common barriers conducting integrative research that include: (1) lack of exposure to epistemological frameworks and team-science skills, (2) challenges to effectively include stakeholder perspectives in his/her research, and (3) variable levels of committee support to conduct integrative research. To overcome the identified barriers and advance integrative research, students recommend how training opportunities can be embedded within existing graduate programs. Students advocate that both internal and external training opportunities are necessary to support the next generation of sustainability scientists.
Potential impacts of climate change on the hydrological components of the Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation and temperature, and modeled water yield, surface runoff, and evapotranspiration, were compared. Ensemble SWAT results indicate increased springtime precipitation, water yield, surface runoff and a shift in evapotranspiration peak one month earlier in the future. To evaluate the performance of model spatial resolution, gridded surface runoff estimated by Lund-Potsdam-Jena managed Land (LPJmL) and Jena Diversity-Dynamic Global Vegetation model (JeDi-DGVM) were compared to SWAT. Long-term comparison shows a 6-8% higher average annual runoff prediction for LPJmL, and a 5-30% lower prediction for JeDi-DGVM, compared to SWAT. Although annual runoff showed little change for LPJmL, monthly runoff projection under-predicted peak runoff and over-predicted low runoff for LPJmL compared to SWAT. The reasons for these differences include differences in spatial resolution of model inputs and mathematical representation of the physical processes. Results indicate benefits of impact assessments at local scales with heterogeneous sets of parameters to adequately represent extreme conditions that are muted in global gridded model studies by spatial averaging over large study domains.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] There is a need to raise our understanding of the impact of climate variability and change on hydrologic processes at the watershed scale. This is important, particularly for land managers and policymakers, in making better-informed decisions to assess adaptation strategies and to ensure that all sectors and populations can meet projected water demand. The Missouri Salt River Basin was chosen for this study due to its unique soil and agriculture-dominated land use. It is dominated by high clay content soils, making it sensitive to changes in the hydrologic condition. While numerous studies have examined hydrologic processes around this region, only a few have analyzed linkages between climate and the consequence of these changes to water allocation. One of the greatest potentials to maintain viable crop and livestock economies is to continue making gains in production efficiency, particularly in the area of rain-fed crops with the potential of increasing irrigation. Therefore, the objective of this study is to: (1) evaluate the impacts of potential climate and land use changes on the hydrologic components of the agriculturally dominated Salt River Basin; (2) evaluate the impact of climate change to agriculture management in this watershed, and determine if land use change can mitigate the climate change impacts on hydrological processes; (3) evaluate the impacts of potential climate changes on the water supply and demand of the Salt River Basin using integrated hydrological model and water allocation model approach; (4) determine if future water supply can meet the Salt River Basin catchment demands, and evaluate the future water competition among different sectors in the Salt River Basin using scenario based approach. Temperature and precipitation projections for two representative concentration pathways (RCP 4.5 moderate CO[2] level and RCP 8.5 high CO[2] level) were obtained from nineteen general circulation models statistically downscaled to better represent local conditions. These data, along with soils, land cover, land management, and topography, were input to the Soil and Water Assessment Tool (SWAT), a process-based hydrologic simulation model, to evaluate hydrologic impacts. Possible outcomes for the near (2020-2039) and far (2040-2059) future scenarios were determined. Combined climate and land use change scenarios showed distinct annual and seasonal variations in hydrological processes. Annual precipitation was projected to increase from 4% to 7%, which resulted in 14% more spring days with soil water content equal or exceeding field capacity in mid-century. However, 07 precipitation was projected to decrease -- a critical factor for crop growth. Higher temperatures led to increased potential vapotranspiration during the growing season, resulting in an increased need for irrigation by 38 mm. Analysis from multiple land use scenarios indicated that converting crop and pasture land to forest coverage can potentially mitigate the effects of climate change on streamflow, thus insuring future water availability. Using hydrologic output simulations from SWAT, evaluation of water allocation strategies was performed using the water evaluation and planning (WEAP) model. By selecting priority water use strategies, WEAP enabled review of potential conflicts among users through scenario-based approaches. Operating on the principle of water balance accounting, a range of inter-related water issues facing water users, including multiple water sources, sectoral demand analyses, water conservation, water allocation priorities, and general reservoir operations, were evaluated. For this study, scenarios with different rate of irrigation expansion for crop areas were evaluated. The Ag Census data from 1997, 2002, and 2007 were analyzed to obtain the historical reported numbers of livestock in each county within the watershed. The historical livestock numbers combined with USDA agricultural projections to 2027 were used to project inventory for 2060. The results indicated that future water shortages will become more prominent in the SRB under projected climate conditions. Without any change irrigation area, the future unmet could double as a consequence of climate change from 3 million m3 to 6 million m3. Increased irrigation equal 10% of crop land results in 38.5 million m3 of unmet water demand. If water from Mark Twain can be withdrawn for agriculture purposes, the unmet demand would lower by 30% compared with the baseline period. However, under prolonged drought period, the impact of the Mark Twain Lake is limited. Finally, under all considered scenarios public water supply is not a source of water vulnerability in this region.
Climate change and population growth are increasing demand for water, causing water shortages across the United States. Decision makers need to understand the impact of climate on water allocation, particularly for watersheds with agricultural activity. The Missouri Salt River Basin (SRB) was selected for this study due to its soil characteristics, agriculturally dominated land use, and because it contains a major reservoir, Mark Twain Lake (MTL), which is the regional source of drinking water. The goal was to evaluate future water allocation in the SRB given projections of future climate and changing land management practices. Future climate data were input to the Soil and Water Assessment Tool, from which discharge outputs to MTL were entered in the Water Evaluation and Planning model to evaluate 2020–2059 crop and drinking water shortages. Water allocation strategies identified potential conflicts among users through scenario‐based approaches. The difference between water demand and supply was projected to increase by 100% because of climate change, from 3 to 6 million m3. Under a dramatic scenario, where irrigated land quadrupled, water shortage could be up to 38.5 million m3 (1,200% increase). Water withdrawals from the MTL may help alleviate part of the projected shortage; however, on‐farm pond storage would likely be more practical and cost‐effective. Overall, the paper provides a methodology for water allocation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.