We use molecular dynamics simulations to study the heat transfer at the interface between crystalline Si and amorphous silica. In order to quantify the thermal boundary resistance, we compare the results of two simulation methods: one in which we apply a stationary thermal gradient across the interface, trying to extract the thermal resistance from the temperature jump; the other based on the exponential approach to thermal equilibrium, by monitoring the relaxation times of the heat flux exchanged across the interface. We compare crystalline Si/amorphous Si vs. crystalline Si/amorphous silica interfaces to assess the relative importance of structural disordering vs. chemistry difference.
Due to the great heat obtained from the combustion chamber, the turbine blades of a jet engine always operate at high temperatures. Therefore, to minimize the temperature of the turbine rotor and stator blades, the internal cooling system was developed. The original rib called the squared-rib has been developed as a turbulence generator to enhance heat transfer ability. This technique is to cast ribs in the serpentine passage inside the turbine blades. By this technique, the vortex exists in the rear rib region that causes a low heat transfer zone. In this investigation, a new rib configuration called the truncated-root rib was designed to reduce the squared-rib disadvantage. The configuration of the truncated-root rib forms a small extra-passage into which the coolant passes through and the vortex is comparatively removed. To investigate the heat transfer performance and fluid flow characteristic of the internal cooling turbine blades, a parametric study of the truncated-root rib with the height and shapes of the extra-passage was performed using three-dimensional Reynolds-averaged Navier–Stokes equations with the shear stress transport turbulence model. The numerical results showed that all the heat transfer performance of the truncated-root rib configuration is greater than that of the squared-rib. The Nusselt number in the case of the truncated-root rib increases by 8.56% with the Reynolds number of 37 392, and the thermal performance is 39.24% higher than that of the original shape in the case with Reynolds number 53 697.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.