Poly(p-phenylenediamine) (PpPD)/carboxylic acid-functionalized multiwalled carbon nanotubes (c-MWCNTs) nanocomposites were prepared by chemical oxidative polymerization using potassium persulfate (K 2 S 2 O 8 ) as an oxidant. Field-emission scanning electron microscopy (FE-SEM) and field-emission transmission electron microscopy (FE-TEM) showed that a tubular layer of PpPD was coated on the surface of carbon nanotubes with a thickness of 10-20 nm. FT-IR analysis provided an evidence for the formation of nanocomposites. The thermal stability of nanocomposites was improved by addition of c-MWCNTs as confirmed by thermogravimetric analysis (TGA). XRD spectra showed that the crystalline nature of PpPD was not affected much by the addition of c-MWCNTs. As the content of c-MWCNTs was increased, the electrical conductivity of the nanocomposites increased due to the interaction between polymer and nanotubes that enhances electron delocalization.
Three-dimensional (3D) bioprinting has become mainstream for precise and repeatable high-throughput fabrication of complex cell cultures and tissue constructs in drug testing and regenerative medicine, food products, dental and medical implants, biosensors, and so forth. Due to this tremendous growth in demand, an overwhelming amount of hardware manufacturers have recently flooded the market with different types of low-cost bioprinter models—a price segment that is most affordable to typical-sized laboratories. These machines range in sophistication, type of the underlying printing technology, and possible add-ons/features, which makes the selection process rather daunting (especially for a nonexpert customer). Yet, the review articles available in the literature mostly focus on the technical aspects of the printer technologies under development, as opposed to explaining the differences in what is already on the market. In contrast, this paper provides a snapshot of the fast-evolving low-cost bioprinter niche, as well as reputation profiles (relevant to delivery time, part quality, adherence to specifications, warranty, maintenance, etc.) of the companies selling these machines. Specifically, models spanning three dominant technologies—microextrusion, droplet-based/inkjet, and light-based/crosslinking—are reviewed. Additionally, representative examples of high-end competitors (including up-and-coming microfluidics-based bioprinters) are discussed to highlight their major differences and advantages relative to the low-cost models. Finally, forecasts are made based on the trends observed during this survey, as to the anticipated trickling down of the high-end technologies to the low-cost printers. Overall, this paper provides insight for guiding buyers on a limited budget toward making informed purchasing decisions in this fast-paced market.
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as
Xenopus laevis
—whose limited regenerative capacities in adulthood mirror those of humans—are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputated
X. laevis
hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals’ hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful “kickstarting” of endogenous regenerative pathways in a vertebrate model.
Computational modeling has been promulgated as a means of optimizing artificial bone tissue culturing ex vivo. In the present report, we show, as a proof-of-concept, that it is possible to model the exact microenvironment within the scaffolds while accounting for their architectural complexities and the presence of cells/tissues in their pores. Our results clearly indicate that image-based modeling has the potential to be a powerful tool for computer-assisted tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.